

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Data Distribution for Mobile Augmented Reality in Simulation and Training

Dennis Brown1
dbrown@ait.nrl.navy.mil

Yohan Baillot2

baillot@ait.nrl.navy.mil
Simon J. Julier2

julier@ait.nrl.navy.mil
David Armoza1

armoza@ait.nrl.navy.mil

Joshua J. Eliason3

jelias1@evl.uic.edu
Mark A. Livingston 1

markl@ait.nrl.navy.mil
Lawrence J. Rosenblum1

rosenblum@ait.nrl.navy.mil
Pat Garrity 4

Pat_Garrity@peostri.army.mil

1Advanced Information Technology, Naval Research Laboratory, Washington, DC 20375
2ITT Advanced Engineering and Sciences, Alexandria, VA 22303

3Electronic Visualization Laboratory, University of Illinois at Chicago, Chiacgo, IL
4U.S. Army Research, Development, and Engineering Command, Orlando, FL

ABSTRACT

The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays head-up
battlefield intelligence information to a dismounted warrior. BARS consists of a wearable computer, a wireless
network, and a tracked see-through Head Mounted Display (HMD). The computer generates graphics that, from the
user's perspective, appear to exist in the surrounding environment. For example, a building could be augmented to
show its name, a plan of its interior, icons to represent reported hazard locations, and the names of adjacent streets.

The full power of mobile augmented reality systems is realized when these systems are connected to one another, to
immersive virtual environments, and to remote information servers. These connections are made through wireless
devices that cannot guarantee connectivity and may have highly constrained bandwidth. Based on these constraints,
we present a robust event-based data distribution mechanism for mobile augmented reality and virtual environments.
It is based on replicated databases, pluggable networking protocols, and communication channels.

For use in simulation and training exercises, we have been working with U.S. Army RDECOM to create an interface
between this data distribution mechanism and a Semi-Automated Forces (SAF) system. With this interface, the
BARS user appears as a dismounted warrior in the SAF system—the BARS user's position and orientation are fed to
the SAF system, and the state from the SAF system is sent back to the BARS user's display. With this SAF interface,
BARS becomes a training system that works in a real location (as compared to a virtual reality simulation) to make
simulated forces appear to existin and interact with the real world.

ABOUT THE AUTHORS

DENNIS BROWN is a Computer Scientist at the Naval Research Laboratory. He received his B.A. in Computer
Science from Rice University in 1996 and his M.S. in Computer Science from the University of North Carolina at
Chapel Hill in 1998. He works on the Battlefield Augmented Reality System (BARS) and multi-modal virtual reality
projects. His research interests include ubiquitous computing and data distribution. He is a member of IEEE.

YOHAN BAILLOT is a computer and electrical engineer of ITT Industries at the Naval Research Laboratory. He
received an M.S. in electrical engineering in 1996 from ISIM, France, and an M.S. in computer science in 1999 from
the University of Central Florida. His research interests are in computer graphics, 3D displays, tracking, vision,
mobile augmented reality and wearable computers. Baillot is a member of the IEEE Computer Society.

SIMON J. JULIER is a Research Scientist for ITT Industries at the Naval Research Laboratory. He received a
D.Phil. from the Robotics Research Group, Oxford University, UK. He is a technical lead on the Battlefield
Augmented Reality System (BARS) project. His research interests include mobile augmented reality and large-scale
distributed data fusion.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

DAVID ARMOZA is a Computer Scientist at the Naval Research Laboratory, where he works in the area of
Distributed Simulation. His current research involves use of the US Navy’s Joint Semi-Automated Forces (JSAF)
simulation system and distributing stand-alone tools with DMSO’s High Level Architecture (HLA). He received a
BS in Computer Science from the University of Maryland, and a MS in Computer Science from The Johns Hopkins
University.

JOSHUA J. ELIASON is a graduate student at the Electronic Visualization Laboratory, University of Illinois at
Chicago. He received a BFA in 1999 from the University of Wisconsin-Madison. He is an intern on the Battlefield
Augmented Reality System (BARS) project at the Naval Research Laboratory. His research interests include human
factors in augmented and virtual reality, computer graphics, animation, and film production.

MARK A. LIVINGSTON is a Research Scientist in the Virtual Reality Laboratory at the Naval Research
Laboratory, where he works on the Battlefield Augmented Reality System (BARS). He received his Ph.D. from the
University of North Carolina at Chapel Hill, where he helped develop a clinical augmented reality system for both
ultrasound-guided and laparoscopic surgical procedures, focusing on tracking subsystems. His current research
focuses on vision-based tracking algorithms and on user perception in augmented reality systems. Livingston is a
member of IEEE, ACM, and SIGGRAPH, and is a member of the VR2004 conference committee.

LAWRENCE J. ROSENBLUM is Director of VR Systems and Research at the Naval Research Laboratory (NRL)
and Program Officer for Visualization and Computer Graphics at the Office of Naval Research (ONR). Rosenblum
received his Ph.D. in mathematics from The Ohio State University. He is on the Editorial Board of IEEE CG&A and
J. Virtual Reality and the Advisory Board of the IEEE Transactions on Visualization and Computer Graphics. He
was the elected Chairman of the IEEE Technical Committee on Computer Graphics from 1994-1996 and is currently
a TC Director. He is a founder and steering committee member of the IEEE Visualization and IEEE VR Conference
Series. Elected a Senior Member of the IEEE in 1994, Rosenblum is also a member of the IEEE Computer Society,
ACM, SIGGRAPH, and the AGU.

PAT GARRITY is a principal investigator at U.S. Army Research, Development, and Engineering Command
(RDECOM), Simulation Technology Center. He currently works in the Dismounted Embedded Training
Technologies (DEST) enterprise area conducting R&D in the area of dismounted soldier embedded training &
simulation. Prior to his involvement with tech base division at RDECOM, he worked as the Project Director for the
Advanced Concepts Research Tools (ACRT) program in PM STI at STRICOM. His current interests include
Human-In-The-Loop (HITL) networked simulators, virtual and augmented reality, and embedded training
applications. He earned his B.S. in Computer Engineering from the University of South Florida in 1985 and his
M.S. in Simulation Systems from the University of Central Florida in 1994.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Data Distribution for Mobile Augmented Reality in Simulation and Training

Dennis Brown1
dbrown@ait.nrl.navy.mil

Yohan Baillot2

baillot@ait.nrl.navy.mil
Simon J. Julier2

julier@ait.nrl.navy.mil
David Armoza1

armoza@ait.nrl.navy.mil

Joshua J. Eliason3

jelias1@evl.uic.edu
Mark A. Livingston 1

markl@ait.nrl.navy.mil
Lawrence J. Rosenblum1

rosenblum@ait.nrl.navy.mil
Pat Garrity 4

Pat_Garrity@peostri.army.mil

1Advanced Information Technology, Naval Research Laboratory, Washington, DC 20375
2ITT Advanced Engineering and Sciences, Alexandria, VA 22303

3Electronic Visualization Laboratory, University of Illinois at Chicago, Chiacgo, IL
4U.S. Army Research, Development, and Engineering Command, Orlando, FL

INTRODUCTION

Distributed virtual reality (VR) technology is used in
many immersive training and simulation environments,
and there is ongoing research and development in
improving the fidelity of these simulators (Stytz, 1996).
However, current technology still does not perfectly
replicate the sensory experience provided by the real
world. Augmented reality, in which virtual reality
techniques are added to the user’s real world
experience, is a promising alternative. Here we will
explain our approach to using augmented reality for
embedded training, specifically, how data is distributed
and shared.

In our research on the Battlefield Augmented Reality
System (BARS) (Julier et. al. 2000, Livingston et. al.
2002), we have focused on the problem of developing
information systems able tothat provide users with
“situation awareness”—data about the environment and
its contents. The centerpiece of BARS is a mobile
augmented reality system that displays head-up
battlefield intelligence information to a dismounted
warrior. It consists of a wearable computer, a wireless
network, and a tracked see-through Head Mounted
Display (HMD). The computer generates graphics that,
from the user's perspective, appear to exist in the
surrounding environment. For example, a building
could be augmented to show its name, a plan of its
interior, icons to represent reported hazard locations,
and the names of adjacent streets.

In an effort sponsored by the Embedded Training for
Dismounted Soldiers (ETDS) Science and Technology
Objective (STO) (Dumanior et. al. 2002) at U.S. Army
RDECOM and the Naval Research Laboratory, we are
developing an embedded training system for Military
Operations in Urban Terrain (MOUT) scenarios using

BARS. The BARS system for embedded training
allows the user to train in the real world with real and
simulated forces. It combines the fidelity of a real
MOUT training environment with the convenience of
simulated forces.

Similar but distinct efforts at using AR for embedded
training are currently underway within the same STO,
including MARCETE (Kirkley et. al. 2002), which
places an emphasis on working with SCORM datasets,
and VICTER (Barham et. al. 2002), which fits within
the limitations of the current Land Warrior system
(Natick Soldier Center 2001).

In its capacity as a situation awareness tool, the BARS
supports a consistent information space. Therefore,
data objects tend to be less complicated and updates
occur less frequently than in virtual environments.
Furthermore, it requires a unified architecture that
allows transport of general state information that can be
used for many purposes. The obvious task is
distributing the virtual object database, but there are
more general uses such as ``remote control'' of
applications (using the event system to control the user
interface of a remote application). This system must
also handle the poor network connectivity that can
sometimes be encountered in military operations. Given
these parameters, we have developed a robust, flexible,
and generalized event-based networking infrastructure
for data distribution. The mechanism builds upon three
techniques: distributed databases, pluggable transport
protocols, and a high-level management technique
known as channels. Additionally, interfaces called
“bridge” applications allow BARS to share data with
external information systems.
In a previous paper, we described the BARS
distribution system and various applications of it

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

(Brown et. al. 2003). In this paper, we briefly
summarize again the BARS networking system, and
then explain how it is used for embedded training.

PROBLEM STATEMENT

The Battlefield Augmented Reality System is a
collaborative mobile augmented reality system
designed to improve the situation awareness and the
coordination between a team of mobile users. By
improving situation awareness, we mean that each user
obtains a better understanding of the environment
through enhanced sensory perception. The types of data
include the names of buildings, routes, objectives, and
the locations of other users. While short-range radio
communications can accomplish much of this, the
passive and natural display paradigm of augmented
reality makes the internalization of the information by
an individual faster and easier.

The hardware of one of our prototype systems is shown
in Figure 1. It consists of a mobile computer, either an
embedded PC with a high-end graphics card or a laptop
with high-end graphics built in. A see-through SVGA
display is worn by the user—we have built systems
with the Sony Glasstron and with the Microvision
Nomad retinal display. The system supports
spatialized audio through software, using commodity
sound cards and headphones. The user operates the
system using a cordless mouse and a wrist keyboard. A
Global Positioning System (GPS) receiver provides
position tracking while an inertial device handles
orientation tracking. A camera can be used for tracking
and sending video reports to a base station. Wireless
802.11b networking is used for data distribution and
GPS corrections. We predict that when a future system
based on our BARS research is used in real operations,
communication will happen over the US military's
hardened communication systems of that time.
However, it is likely that any deployed system will still
be vulnerable to connectivity and bandwidth
complications in urban areas, and our design reflects
that consideration.

The BARS mobile user sees computer graphics
superimposed on or next to the real objects they are
intended to augment, in addition to status information
such as compass direction and messages from other
users. Figure 2 a view using the system—the parking
lot is augmented to highlight the neighboring building
and a fellow BARS user.

Figure 1. The BARS Wearable System

 Figure 2. Sample view through BARS display,
showing building information and the location of

another BARS user.

This application introduces a number of characteristics
that impact the distribution of information and events
between users:

• The objective is to provide relevant
information, not a consistent virtual world.
The BARS environment is populated by a set
of objects that are self-contained entities and
other types of discrete data. Each object can
be relatively simple, representing a building
type and location, an avatar to symbolize
another user, the location of a hazard, and so
on. It is not necessary to transmit complicated
geometric objects or behaviors—only
semantic information. The latency in the
update of an object or an entity is a secondary
consideration.

• Data distribution between users can be
heterogeneous. Different users might perform

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

different tasks and thus have different
information requirements.

• The distribution system should facilitate
collaboration between users. In addition to
environmental data, the distribution system
must support the propagation of meta-data
such as task assignments, objectives, and
personalized messages.

• Users should have the ability to create reports
and update entities in the database. For
example, a user might observe that an
environmental feature (such as a vehicle) is
not where the database indicates it should be.
The user should have the ability to move the
object to its correct location.

• Network connectivity is unreliable. As a user
traverses a terrain, reception strength and
bandwidth may vary.

BARS EVENT DISTRIBUTION SYSTEM

A BARS session consists of one or more BARS
applications, or program instances. Each BARS
application minimally uses a core set of libraries to
maintain a local database of objects and communicate
over a network. Applications may also include modules
to read data from sensors, draw the augmented display,
and perform other tasks, depending on the purpose of
the application. The local database is a copy of a master
database that is shared between all BARS applications
on the network. The BARS distribution system is
responsible for selectively replicating the master
database in all applications.

The BARS distribution system is based entirely on the
concept of events. Events are used to instantiate objects
(in effect, transmit a view of a database between
systems), update existing objects, and to provide other
non-database status information such as a new
objective for an individual user.

The event distribution system is based on three
components: replicated object repositories, event
transporters, and communication channels. We will
describe these components along with bridge
applications, which communicate with outside virtual
and augmented reality systems.

Replicated Object Repositories

An object repository inside a BARS application holds
the data for that application. This data consists of the

mostly static models of the physical surroundings
(buildings, streets, points of interest, etc), dynamic
avatars that represent users and other entities, and
objects created to communicate ideas, such as reports
of enemy locations, routes for users to follow, and
digital ink. The database is replicated in whole or in
part for every BARS application.

When a BARS application starts, it loads an initial set
of objects from a number of sources, including data
files, other applications already running on the network,
and files specified on the command line. This initial set
of objects typically consists of street labels, landmarks,
building information, and other terrain-like
information, as well as an initial set of objectives,
routes, and phase markers for the current task. Since a
BARS user is initially given a database to start, and
everything else in the wearable BARS system is self-
contained, the user will have a working AR system
even if all network connectivity is lost during an
operation.

Although network limitations may hamper wireless
communications for the mobile users, there are few
limitations on the base users. Base users are those that
use stationary systems and are not mobile, such as users
at fixed command centers. Their applications run on
stationary VR systems such as a desktop computers, 3D
workbenches, and immersive VR rooms. Using the
same distribution system, they can have high levels of
detail and interaction by taking advantage of the
increased bandwidth for replicating more objects and
seeing change events at a higher frequency.

Event Transportation

The heart of the event transportation system is the
Object and Event Manager. The Object and Event
Manager is responsible for dispatching events within an
application and distributing those events to remote
applications.

When the Object and Event Manager receives an event,
it places it on an asynchronous event queue. The event
dispatching thread delivers the event to all the listeners
that are subscribed to receive the specified event type.
The event dispatching mechanism maintains two sets of
data—the set of valid event/listener pairs, and the set of
listeners registered for each event type. Because the
event system has is based on the Java Abstract Window
Toolkit event model (Sun Microsystems 2003) we
leverage the Reflection Application Programming
Interface to achieve these steps. The type of each event
is specified by its class. For each event type, a listener
is defined. When a listener is registered with the object

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

and event manager, its interface is queried and it is
registered to receive all event types for which its
interface is compatible. Therefore, it is possible to
dynamically extend the set of event and listener types at
runtime.

The following is an example of the life of an event
within a BARS application that tracks a user’s position.
The user's position is updated by calling a method in
the user object to set its attitude based on data gathered
from tracking devices. This method in turn creates an
event encapsulating the change to the attitude and sends
it to the dispatcher. The event arrives in the
dispatcher's incoming queue and is processed. The
dispatcher sends the event to all listeners, including the
initial object itself, in addition to the graphics system
(to update the viewpoint) and the filter (to update what
objects are rendered), and any other registered
listeners. Note that the object's attitude isn't set until it
receives the event back from the dispatcher (the
alternative is to set the position at the same time the
event is set)—this way, the order of events is preserved.
Figure 3 shows the flow of events within an
application.

Figure 3. Event distribution within an application.
Arrows show event movement.

We have described how events propagate within a
single application instance. We extended this event
mechanism to allow many separate BARS applications
to trade events by creating Event Transporters that
allow Object and Event Managers in different BARS
application instances to send and receive events over
Internet Protocol (IP). If an event is tagged as
distributed, an Event Transporter serializes the event
and broadcasts it to other applications. The Event
Transporters in remote applications synthesize the
event object and dispatch it on those applications' event

queues. Our system uses several types of transporters
based on IP multicast, the Lightweight Reliable
Multicast Protocol (LRMP) from INRIA (Liao 1998),
and a combination protocol we call the Selectively
Unreliable Multicast Protocol (SUMP) that combines
IP multicast and LRMP. Typically, application
instances use SUMP on the local network. To
communicate outside of the local network (where
multicast is typically filtered out) a TCP/IP transporter
and bridge are used (described later in the Bridges
subsection). Because of the connectionless nature of IP
multicast, the distribution is robust in that the network
connection can be unreliable and the user application
will still function, although without network updates at
some times.

As events are created, they are tagged ``reliable'' or
``unreliable'' designating how they should be sent.
Object creation and deletion are always sent reliably.
Object changes are sent reliably or unreliably based
first on whether the modification is relative or absolute.
Relative changes have an ordering and each one is
important, so those are sent reliably. Absolute changes,
such as the constant updates of a user position, are
mostly sent unreliably since if one is missed, the next
would overwrite it anyway—periodically these changes
are sent reliably. This policy makes the assumption
that the implementation of IP networking in a real
operation may drop IP packets often, making reliable
multicast expensive, and so we don't send events
reliably unless we think it is truly necessary. Figure 4
shows the flow of events between applications.

Channels

If simply implemented as described above, the event
distribution mechanism will send all events to every
application, which would replicate the entire database
inside every application instance. Creating copies of
every object for every user and updating those replicas
would swamp the network with information many users
would not care about anyway. To avoid this situation,
we have devised an approach of partially replicating the
database to minimize the amount of unwanted data
distributed to each application instance.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Figure 4. Event distribution between applications. Arrows show event movement.

In creating this replication mechanism, we first looked
at the uses of BARS that drive our policies. One
condition to consider is that a mobile user can only see
so much and deal with information in a relatively small
radius, so we considered a spatial area-of-interest
mechanism. It is not necessarily the case that a mobile
user only cares about objects that can be seen from his
or her current position in the real world; for example,
our mobile application includes an overhead map mode
in which the user can zoom out to an arbitrary height to
observe objectspossibly hugeradius around the current
position. However, it seems that there would be few
situations in which a mobile user would request for
objects farther away, at the horizon for example, so for
most situations, a simple area-of-interest mechanism is
reasonable.

However, another condition is the type of information
being distributed. Even if some objects are near to a
mobile user, they may have importance and only cause
distraction. Alternatively, the objects may indeed be
too far away to be seen, but very important, such as
with possible sniper locations. For these cases, a simple
area-of-interest mechanism isn't sufficient. In an earlier
paper (Julier et. al. 2000), we described a filtering
mechanism for mobile augmented reality. This filtering
mechanism operates on the local object database within
an application instance. It does not show users objects
in which they have no interest in order to reduce
display clutter. In practice, it simply hides objects from
the user—it does not actually control whether or not the
application instance holds replicas of these objects or
receives events related to these objects.

Keeping these situations in mind, we have developed
channels. The term is overloaded in the literature, but
in our system, a channel is a set of related objects. It is
implemented as an instance of an event transporter and
a multicast group designated for that transporter. An
application can join an arbitrary number of channels
and create new channels, until all available multicast
groups are allocated. Figure 5 shows a single
application using two channels.

Figure 5. Event distribution using two channels.
Arrows show event movement.

One example of a channel is a set of objects in a certain
spatial area. As users move from location to location,
they can join and leave channels based on spatial areas.
Another example is the set of hazardous objects; while

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

in the previous example, the application instance would
replicate only objects nearby, the hazardous objects
channel could cover a larger area, but only include
those hazards. Also, BARS incorporates several
interaction modules that produce subsequent objects.
One such interactor module is principally responsible
for real-time, interactive geometric construction. It
allows users to collaboratively place points and build
new objects from thosepoints; in this case, the
intermediate points would not be visible to other users
because they are placed in a channel only joined by the
constructing users. Other users would only see the final
objects. Another interactor allows a user to draw
digital ink for interpretation by a multimodal
interaction system—this ink is turned into new objects
or user interface commands. In this case, the
application instance of the user drawing the ink would
be placed in a separate channel, joined by the
application to interface with the multimodal system.
The ink is placed in this channel so that other users
would not see these sketches out of context.

Bridges

As we alluded to in the previous section with the
multimodal interaction example, some of our BARS
applications communicate with other systems. We call
these applications bridges. Bridges join both the BARS
distribution system and an external system. They
translate object creation and change events between
BARS and external systems. By maintaining tables
linking BARS objects and these external objects, we
can represent those objects in BARS and vice-versa.
Two systems with which we can communicate are the
Columbia Mobile Augmented Reality System (Höllerer
et. al. 1999) and the Oregon Graduate Institute's
Quickset multimodal interface (Pittman et. al. 1996).

USING BARS FOR EMBEDDED TRAINING

We have shown how BARS wearable systems and their
operators can communicate with each other, with
central data repositories, and with external information
systems. Although BARS was originally designed for
providing situation awareness during operations, its
components can be reused for training in real
environments by augmenting the real world with
simulated forces and other factors.

BARS for embedded MOUT training works as follows:

• Simulated forces are rendered on the display,
so as the user looks around the real MOUT
facility, forces appear to exist in the real world
(within current graphics limitations) even

though they do not truly exist. At the same
time, fellow real trainees remain visible.

• Spatialized audio is piped through the
headphones to replicate the aural cues that the
simulated forces would make if they were real.
These sounds may include footsteps,
helicopters, and so on. Since the sound is
spatialized, the user can determine the location
of the simulated force by listening, like in the
real world.

• Interaction with the simulated forces is very
limited at this time. Real and virtual forces can
shoot at each other.

• Simulated forces are controlled through
various means and are distributed to the
trainees using the BARS distribution system.

There are several technical challenges to this task, even
with all of the work already completed for BARS, that
will be explained further.

Rendering Simulated Forces Realistically

The simulated forces need to appear on the user’s
display to give the illusion that they exist in the real
world. There are several inherent problems: model
fidelity, lighting to match the real environment, and
occlusion by real objects.

Model fidelity is controlled by the modeler and is
limited by the power of the machine running the
application. Although models that can be rendered in
real time still look computer generated, just like in VR-
based simulations, the limited AR model representation
capabilities are adequately realistic for embedded
simulation and training. AR actually has an advantage
over VR with respect to rendering; the AR graphics
system does not need to draw an entire virtual world,
only the augmented forces, so they could potentially be
more detailed than those in VR-based simulations.

Lighting the rendered forces is a problem we have not
approached yet. This task would require knowing the
lighting conditions of the real environment in which the
model would appear, and changing the renderer’s light
model to match. Another limitation is the display itself,
as it is very sensitive to outside light, and even if the
image is rendered with perfect lighting, it still might not
appear correctly on the display.

Occlusion of simulated objects by real objects is a
problem we have tackled, as we feel that this problem,
more than lighting or model complexity, is the one that
would ruin the immersion of training using AR.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Imagine using an AR training system and seeing a
simulated force, which is supposed to be behind a
building, rendered in front of the building. This
property is actually a feature of AR used for
operations—it gives the user a way to see through
walls. However, today’s dismounted warriors cannot
see through walls, and so in the AR-based trainer, they
should not see simulated forces that should be occluded
by real objects.

We solve this problem by using a model of the training
environment. In using our AR system for operations,
we know where the user is looking and can draw an
augmenting model of buildings and features
superimposed on the real features. In AR for training,
we simply render this same model in flat black. On the
computer display, these black features will occlude the
parts of the simulated forces the user should not see.
However, since black is the “see through” color on the
AR display, the user will still see the real world, along
with the correct non-occluded parts of the simulated
forces. Figure 6 shows a sequence of images
demonstrating this technique. Figure 6A shows the real-
world scene with no augmentation. In figure 6B, we
show the same scene but with simulated forces simply
drawn over the scene at their locations in the world—
there is no occlusion. It is hard to tell if all of the forces
are intended to be in front of the building, or if they are
just drawn there due to limitations of the system. Figure
6C shows the simulated forces occluded by a gray
model, however, the model also occludes some of the
real world. Finally, figure 6D shows the scene rendered
using a black model, which serves two purposes: it
occludes the simulated forces properly and, since it is
the “see through” color, allows the user to see the real
world instead of the gray model.

Inserting Aural Cues

Since we already have a 3D world model, and we know
the locations of the user and the simulated forces, we
can use existing 3D sound libraries to provide
spatialized audio. We simply attach sound streams to
simulated forces and update the audio library with the
positions of those forces and with the user’s listening
attitude. Open-air headphones naturally “mix” the
sounds of the real world with the computer-generated
sounds.

Figure 6. Stages in the development of AR for
embedded training.

Interacting With Simulated Forces

The simulated forces can be controlled in several ways
including simple animation scripts. However, the
animations are not reactive and tend to create a simple
“shooting gallery” type of simulation. They can also be
controlled by users of immersive VR simulations that
participate on the same network as the AR user.
Finally, they can be controlled through Semi-
Automated Force (SAF) systems.

BARS communicates with outside information systems
using bridge applications, as described in the previous
section. By creating a bridge application between
BARS and a SAF system, we can leverage the years of
work already put into simulating forces for both non-
immersive and immersive VR-based training, and
interact with those forces in a real training
environment.

Figure 7 shows a set of BARS applications for an
embedded training scenario: two trainees using
wearable systems, a trainee using an immersive VR
system, an observer using a VR system, and a bridge
synchronizing the entities in BARS and a connected
SAF system. The bridge converts SAF entities into
BARS entities and vice-versa. It keeps those entities
updated on each side of the bridge as they change by
converting BARS events into DIS or HLA packets and
vice-versa. The bridge is not a simple filter for
converting these events; it must maintain internal state
information in order to convert the events and packets
properly. In addition to sharing entity information, the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

system allows BARS users to engage the simulated
forces and allows the simulated forces to retaliate.

Figure 7. Sharing information between BARS and a

SAF system using a bridge application.

FUTURE WORK

We plan to pursue refinement of the BARS-SAF
interface to exploit advanced SAF functionality such as
DISAF human articulation; rather than static human
models that are positioned similar to toy soldiers.

We also anticipate exploring a mixture of AR
techniques that we developed for situation awareness in
real operations with the AR techniques for training.
While this would no longer mimic the real world (since,
for example, we can’t really see through walls), we
hope that in the future, real operations will use BARS
or one of its descendents. By inserting the enhanced
AR capabilities into the training system, we can test
which capabilities are most useful and refine them in a
controlled environment.

REFERENCES

Barham, P., B. Plamondon, P. Dumanoir, & P. Garrity
(2002). “VICTER: An Embedded Virtual Simulation

System for Land Warrior.” Proceedings of the 23rd
Army Science Conference, Orlando, FL, USA.

Brown, D., Y. Baillot, S.J. Julier, & M.A. Livingston

(2003). “An Event-Based Data Distribution
Mechanism for Collaborative Mobile Augmented
Reality and Virtual Environments,” Proceedings of
the 2003 IEEE Virtual Reality Conference, Los
Angeles, CA, USA.

Dumanoir, P., P. Garrity, V. Lowe, & B. Witmer (2002).

“Embedded Training for Dismounted Soldiers
(ETDS),” Proceedings of the 2002
Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, USA.

Höllerer, T., S. Feiner, T. Terauchi, G. Rashid, & D.

Hallaway (1999). “Exploring MARS: Developing
Indoor and Outdoor User Interfaces to a Mobile
Augmented Reality System,” in Computers and
Graphics 23 (6), Elsevier Publishers, Dec 1999, pp.
779-785.

Julier, S., M. Lanzagorta, S. Sestito, L. Rosenblum, T.

Höllerer, & S. Feiner (2000). “Information Filtering
for Mobile Augmented Reality,” Proceedings of the
2000 IEEE International Symposium on Augmented
Reality, Germany.

Julier, S., Y. Baillot, D. Brown, & L. Rosenblum (2000).

“BARS: Battlefield Augmented Reality System,”
NATO Symposium on Information Processing
Techniques for Military Systems, October 2000,
Istanbul, Turkey.

Kirkley, S., J. Kirkley, S.C. Borland, T. Waite, P.

Dumanior, P. Garrity, & B. Witmer (2002).
“Embedded Training with Mobile AR,” Proceedings
of the 23rd Army Science Conference, Orlando, FL,
USA.

Liao, T (1998). Light-weight Reliable Multicast

Protocol. Internet Draft retrieved June 9, 2003 from
http://webcanal.inria.fr/lrmp/draft-liao-lrmp-00.txt

Livingston, M.A., L.J. Rosenblum, S.J. Julier, D. Brown,

Y. Baillot, J.E. Swan II, J.L. Gabbard, & D. Hix
(2002). “An Augmented Reality System for Military
Operations in Urban Terrain,” Proceedings of the
2002 Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, USA.

Natick Soldier Center (2001). Operational

Requirements Document for Land Warrior.
Retrieved June 6, 2003, from

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

http://www.natick.army.mil/soldier/WSIT/LW_ORD.
PDF

Pittman, J., I. Smith, P. Cohen, S. Oviatt, & T. Yang

(1996). “Quickset: A multimodal interface for
military simulations,” Proceedings of the 6th
Conference on Computer-Generated Forces and
Behavioral Representation, Orlando, FL, USA.

Stytz, M.R. (1996). “Distributed Virtual Environments,”
IEEE Computer Graphics And Applications, May
1996, pp. 19-31.

Sun Microsystems, Inc. (2003). Java API

Documentation. Retrieved June 9, 2003 from
http://java.sun.com/docs

