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ABSTRACT 

 
The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays head-up 
battlefield intelligence information to a dismounted warrior.  BARS consists of a wearable computer, a wireless 
network, and a tracked see-through Head Mounted Display (HMD).  The computer generates graphics that, from the 
user's perspective, appear to exist in the surrounding environment.  For example, a building could be augmented to 
show its name, a plan of its interior, icons to represent reported hazard locations, and the names of adjacent streets. 
 
The full power of mobile augmented reality systems is realized when these systems are connected to one another, to 
immersive virtual environments, and to remote information servers.  These connections are made through wireless 
devices that cannot guarantee connectivity and may have highly constrained bandwidth.  Based on these constraints, 
we present a robust event-based data distribution mechanism for mobile augmented reality and virtual environments.  
It is based on replicated databases, pluggable networking protocols, and communication channels.  
 
For use in simulation and training exercises, we have been working with U.S. Army RDECOM to create an interface 
between this data distribution mechanism and a Semi-Automated Forces (SAF) system.  With this interface, the 
BARS user appears as a dismounted warrior in the SAF system—the BARS user's position and orientation are fed to 
the SAF system, and the state from the SAF system is sent back to the BARS user's display.  With this SAF interface, 
BARS becomes a training system that works in a real location (as compared to a virtual reality simulation) to make 
simulated forces appear to existin and interact with the real world. 
 

ABOUT THE AUTHORS 
 
DENNIS BROWN is a Computer Scientist at the Naval Research Laboratory.  He received his B.A. in Computer 
Science from Rice University in 1996 and his M.S. in Computer Science from the University of North Carolina at 
Chapel Hill in 1998.  He works on the Battlefield Augmented Reality System (BARS) and multi-modal virtual reality 
projects.  His research interests include ubiquitous computing and data distribution. He is a member of IEEE.  
 
YOHAN BAILLOT is a computer and electrical engineer of ITT Industries at the Naval Research Laboratory.  He 
received an M.S. in electrical engineering in 1996 from ISIM, France, and an M.S. in computer science in 1999 from 
the University of Central Florida.  His research interests are in computer graphics, 3D displays, tracking, vision, 
mobile augmented reality and wearable computers.  Baillot is a member of the IEEE Computer Society. 
 
SIMON J. JULIER  is a Research Scientist for ITT Industries at the Naval Research Laboratory.  He received a 
D.Phil. from the Robotics Research Group, Oxford University, UK.  He is a technical lead on the Battlefield 
Augmented Reality System (BARS) project.  His research interests include mobile augmented reality and large-scale 
distributed data fusion. 
 



 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

DAVID ARMOZA  is a Computer Scientist at the Naval Research Laboratory, where he works in the area of 
Distributed Simulation.  His current research involves use of the US Navy’s Joint Semi-Automated Forces (JSAF) 
simulation system and distributing stand-alone tools with DMSO’s High Level Architecture (HLA).  He received a 
BS in Computer Science from the University of Maryland, and a MS in Computer Science from The Johns Hopkins 
University. 
 
JOSHUA J. ELIASON is a graduate student at the Electronic Visualization Laboratory, University of Illinois at 
Chicago.  He received a BFA in 1999 from the University of Wisconsin-Madison.  He is an intern on the Battlefield 
Augmented Reality System (BARS) project at the Naval Research Laboratory.  His research interests include human 
factors in augmented and virtual reality, computer graphics, animation, and film production. 
 
MARK A. LIVINGSTON is a Research Scientist in the Virtual Reality Laboratory at the Naval Research 
Laboratory, where he works on the Battlefield Augmented Reality System (BARS).  He received his Ph.D. from the 
University of North Carolina at Chapel Hill, where he helped develop a clinical augmented reality system for both 
ultrasound-guided and laparoscopic surgical procedures, focusing on tracking subsystems.  His current research 
focuses on vision-based tracking algorithms and on user perception in augmented reality systems.  Livingston is a 
member of IEEE, ACM, and SIGGRAPH, and is a member of the VR2004 conference committee.  
 
LAWRENCE J. ROSENBLUM  is Director of VR Systems and Research at the Naval Research Laboratory (NRL) 
and Program Officer for Visualization and Computer Graphics at the Office of Naval Research (ONR).  Rosenblum 
received his Ph.D. in mathematics from The Ohio State University.  He is on the Editorial Board of IEEE CG&A and 
J. Virtual Reality and the Advisory Board of the IEEE Transactions on Visualization and Computer Graphics.  He 
was the elected Chairman of the IEEE Technical Committee on Computer Graphics from 1994-1996 and is currently 
a TC Director.  He is a founder and steering committee member of the IEEE Visualization and IEEE VR Conference 
Series.  Elected a Senior Member of the IEEE in 1994, Rosenblum is also a member of the IEEE Computer Society, 
ACM, SIGGRAPH, and the AGU. 
 
PAT GARRITY  is a principal investigator at U.S. Army Research, Development, and Engineering Command 
(RDECOM), Simulation Technology Center. He currently works in the Dismounted Embedded Training 
Technologies (DEST) enterprise area conducting R&D in the area of dismounted soldier embedded training & 
simulation.  Prior to his involvement with tech base division at RDECOM, he worked as the Project Director for the 
Advanced Concepts Research Tools (ACRT) program in PM STI at STRICOM.  His current interests include 
Human-In-The-Loop (HITL) networked simulators, virtual and augmented reality, and embedded training 
applications.  He earned his B.S. in Computer Engineering from the University of South Florida in 1985 and his 
M.S. in Simulation Systems from the University of Central Florida in 1994. 



 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

 
 

Data Distribution for Mobile Augmented Reality in Simulation and Training 
 

Dennis Brown1 
dbrown@ait.nrl.navy.mil 

Yohan Baillot2 

baillot@ait.nrl.navy.mil 
Simon J. Julier2 

julier@ait.nrl.navy.mil 
David Armoza1 

armoza@ait.nrl.navy.mil 

Joshua J. Eliason3 

jelias1@evl.uic.edu 
Mark A. Livingston 1 

markl@ait.nrl.navy.mil 
Lawrence J. Rosenblum1 

rosenblum@ait.nrl.navy.mil 
Pat Garrity 4 

Pat_Garrity@peostri.army.mil 

1Advanced Information Technology, Naval Research Laboratory, Washington, DC 20375 
2ITT Advanced Engineering and Sciences, Alexandria, VA 22303 

3Electronic Visualization Laboratory, University of Illinois at Chicago, Chiacgo, IL 
4U.S. Army Research, Development, and Engineering Command, Orlando, FL 

 
 

INTRODUCTION 
 
Distributed virtual reality (VR) technology is used in 
many immersive training and simulation environments, 
and there is ongoing research and development in 
improving the fidelity of these simulators (Stytz, 1996). 
However, current technology still does not perfectly 
replicate the sensory experience provided by the real 
world. Augmented reality, in which virtual reality 
techniques are added to the user’s real world 
experience, is a promising alternative. Here we will 
explain our approach to using augmented reality for 
embedded training, specifically, how data is distributed 
and shared. 
 
In our research on the Battlefield Augmented Reality 
System (BARS) (Julier et. al. 2000, Livingston et. al. 
2002), we have focused on the problem of developing 
information systems able tothat provide users with 
“situation awareness”—data about the environment and 
its contents. The centerpiece of BARS is a mobile 
augmented reality system that displays head-up 
battlefield intelligence information to a dismounted 
warrior.  It consists of a wearable computer, a wireless 
network, and a tracked see-through Head Mounted 
Display (HMD).  The computer generates graphics that, 
from the user's perspective, appear to exist in the 
surrounding environment.  For example, a building 
could be augmented to show its name, a plan of its 
interior, icons to represent reported hazard locations, 
and the names of adjacent streets. 
 
In an effort sponsored by the Embedded Training for 
Dismounted Soldiers (ETDS) Science and Technology 
Objective (STO) (Dumanior et. al. 2002) at U.S. Army 
RDECOM and the Naval Research Laboratory, we are 
developing an embedded training system for Military 
Operations in Urban Terrain (MOUT) scenarios using 

BARS. The BARS system for embedded training 
allows the user to train in the real world with real and 
simulated forces. It combines the fidelity of a real 
MOUT training environment with the convenience of 
simulated forces. 
 
Similar but distinct efforts at using AR for embedded 
training are currently underway within the same STO, 
including MARCETE (Kirkley et. al. 2002), which 
places an emphasis on working with SCORM datasets, 
and VICTER (Barham et. al. 2002), which fits within 
the limitations of the current Land Warrior system 
(Natick Soldier Center 2001). 
 
In its capacity as a situation awareness tool, the BARS 
supports a consistent information space. Therefore, 
data objects tend to be less complicated and updates 
occur less frequently than in virtual environments. 
Furthermore, it requires a unified architecture that 
allows transport of general state information that can be 
used for many purposes. The obvious task is 
distributing the virtual object database, but there are 
more general uses such as ``remote control'' of 
applications (using the event system to control the user 
interface of a remote application). This system must 
also handle the poor network connectivity that can 
sometimes be encountered in military operations. Given 
these parameters, we have developed a robust, flexible, 
and generalized event-based networking infrastructure 
for data distribution. The mechanism builds upon three 
techniques: distributed databases, pluggable transport 
protocols, and a high-level management technique 
known as channels. Additionally, interfaces called 
“bridge” applications allow BARS to share data with 
external information systems. 
In a previous paper, we described the BARS 
distribution system and various applications of it 
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(Brown et. al. 2003). In this paper, we briefly 
summarize again the BARS networking system, and 
then explain how it is used for embedded training. 
 
 

PROBLEM STATEMENT 
 
The Battlefield Augmented Reality System is a 
collaborative mobile augmented reality system 
designed to improve the situation awareness and the 
coordination between a team of mobile users. By 
improving situation awareness, we mean that each user 
obtains a better understanding of the environment 
through enhanced sensory perception. The types of data 
include the names of buildings, routes, objectives, and 
the locations of other users. While short-range radio 
communications can accomplish much of this, the 
passive and natural display paradigm of augmented 
reality makes the internalization of the information by 
an individual faster and easier.  
 
The hardware of one of our prototype systems is shown 
in Figure 1. It consists of a mobile computer, either an 
embedded PC with a high-end graphics card or a laptop 
with high-end graphics built in. A see-through SVGA 
display is worn by the user—we have built systems 
with the Sony Glasstron and with the Microvision 
Nomad retinal display. The system supports 
spatialized audio through software, using commodity 
sound cards and headphones. The user operates the 
system using a cordless mouse and a wrist keyboard. A 
Global Positioning System (GPS) receiver provides 
position tracking while an inertial device handles 
orientation tracking. A camera can be used for tracking 
and sending video reports to a base station. Wireless 
802.11b networking is used for data distribution and 
GPS corrections. We predict that when a future system 
based on our BARS research is used in real operations, 
communication will happen over the US military's 
hardened communication systems of that time. 
However, it is likely that any deployed system will still 
be vulnerable to connectivity and bandwidth 
complications in urban areas, and our design reflects 
that consideration. 
 
The BARS mobile user sees computer graphics 
superimposed on or next to  the real objects they are 
intended to augment, in addition to status information 
such as compass direction and messages from other 
users. Figure 2  a view using the system—the parking 
lot is augmented to highlight the neighboring building 
and a fellow BARS user. 
 

 
 

Figure 1.  The BARS Wearable System 
 

 
 

 Figure 2.  Sample view through BARS display, 
showing building information and the location of 

another BARS user. 
 
This application introduces a number of characteristics 
that impact the distribution of information and events 
between users: 

• The objective is to provide relevant 
information, not a consistent virtual world. 
The BARS environment is populated by a set 
of objects that are self-contained entities and 
other types of discrete data. Each object can 
be relatively simple, representing a building 
type and location, an avatar to symbolize 
another user, the location of a hazard, and so 
on. It is not necessary to transmit complicated 
geometric objects or behaviors—only 
semantic information.  The latency in the 
update of an object or an entity is a secondary 
consideration. 

• Data distribution between users can be 
heterogeneous.  Different users might perform 
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different tasks and thus have different 
information requirements. 

• The distribution system should facilitate 
collaboration between users. In addition to 
environmental data, the distribution system 
must support the propagation of meta-data 
such as task assignments, objectives, and 
personalized messages.  

• Users should have the ability to create reports 
and update entities in the database. For 
example, a user might observe that an 
environmental feature (such as a vehicle) is 
not where the database indicates it should be. 
The user should have the ability to move the 
object to its correct location. 

• Network connectivity is unreliable. As a user 
traverses a terrain, reception strength and 
bandwidth may vary.  

 
 

BARS EVENT DISTRIBUTION SYSTEM 
 
A BARS session consists of one or more BARS 
applications, or program instances. Each BARS 
application minimally uses a core set of libraries to 
maintain a local database of objects and communicate 
over a network. Applications may also include modules 
to read data from sensors, draw the augmented display, 
and perform other tasks, depending on the purpose of 
the application. The local database is a copy of a master 
database that is shared between all BARS applications 
on the network. The BARS distribution system is 
responsible for  selectively replicating the master 
database in all applications. 
 
The BARS distribution system is based entirely on the 
concept of events. Events are used to instantiate objects 
(in effect, transmit a view of a database between 
systems), update existing objects, and to provide other 
non-database status information such as a new 
objective for an individual user.  
 
The event distribution system is based on three 
components: replicated object repositories, event 
transporters, and communication channels. We will 
describe these components along with bridge 
applications, which communicate with outside virtual 
and augmented reality systems. 
 
 
Replicated Object Repositories 
 
An object repository inside a BARS application holds 
the data for that application. This data consists of the 

mostly static models of the physical surroundings 
(buildings, streets, points of interest, etc), dynamic 
avatars that represent users and other entities, and 
objects created to communicate ideas, such as reports 
of enemy locations, routes for users to follow, and 
digital ink. The database is replicated in whole or in 
part for every BARS application. 
 
When a BARS application starts, it loads an initial set 
of objects from a number of sources, including data 
files, other applications already running on the network, 
and files specified on the command line. This initial set 
of objects typically consists of street labels, landmarks, 
building information, and other terrain-like 
information, as well as an initial set of objectives, 
routes, and phase markers for the current task. Since a 
BARS user is initially given a database to start, and 
everything else in the wearable BARS system is self-
contained, the user will have a working AR system 
even if all network connectivity is lost during an 
operation. 
 
Although network limitations may hamper wireless 
communications for the mobile users, there are few 
limitations on the base users. Base users are those that 
use stationary systems and are not mobile, such as users 
at fixed command centers. Their applications run on 
stationary VR systems such as a desktop computers, 3D 
workbenches, and immersive VR rooms. Using the 
same distribution system, they can have high levels of 
detail and interaction by taking advantage of the 
increased bandwidth for replicating more objects and 
seeing change events at a higher frequency. 
 
Event Transportation 
 
The heart of the event transportation system is the 
Object and Event Manager. The Object and Event 
Manager is responsible for dispatching events within an 
application and distributing those events to remote 
applications. 
 
When the Object and Event Manager receives an event, 
it places it on an asynchronous event queue. The event 
dispatching thread delivers the event to all the listeners 
that are subscribed to receive the specified event type.  
The event dispatching mechanism maintains two sets of 
data—the set of valid event/listener pairs, and the set of 
listeners registered for each event type. Because the 
event system has is based on the Java Abstract Window 
Toolkit event model (Sun Microsystems 2003) we 
leverage the Reflection Application Programming 
Interface to achieve these steps. The type of each event 
is specified by its class. For each event type, a listener 
is defined. When a listener is registered with the object 



 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

and event manager, its interface is queried and it is 
registered to receive all event types for which its 
interface is compatible. Therefore, it is possible to 
dynamically extend the set of event and listener types at 
runtime. 
 
The following is an example of the life of an event 
within a BARS application that tracks a user’s position. 
The user's position is updated by calling a method in 
the user object to set its attitude based on data gathered 
from tracking devices. This method in turn creates an 
event encapsulating the change to the attitude and sends 
it to the dispatcher.  The event arrives in the 
dispatcher's incoming queue and is processed. The 
dispatcher sends the event to all listeners, including the 
initial object itself, in addition to the graphics system 
(to update the viewpoint) and the filter (to update what 
objects are rendered), and any other registered 
listeners. Note that the object's attitude isn't set until it 
receives the event back from the dispatcher (the 
alternative is to set the position at the same time the 
event is set)—this way, the order of events is preserved. 
Figure 3 shows the flow of events within an 
application.  
 

 
 

Figure 3. Event distribution within an application. 
Arrows show event movement. 

 
We have described how events propagate within a 
single application instance. We extended this event 
mechanism to allow many separate BARS applications 
to trade events by creating Event Transporters that 
allow Object and Event Managers in different BARS 
application instances to send and receive events  over 
Internet Protocol (IP).  If an event is tagged as 
distributed, an Event Transporter serializes the event 
and broadcasts it to other applications. The Event 
Transporters in remote applications synthesize the 
event object and dispatch it on those applications' event 

queues. Our system uses several types of transporters 
based on IP multicast, the Lightweight Reliable 
Multicast Protocol (LRMP) from INRIA (Liao 1998), 
and a combination protocol we call the Selectively 
Unreliable Multicast Protocol (SUMP) that combines 
IP multicast and LRMP. Typically, application 
instances use SUMP on the local network.  To 
communicate outside of the local network (where 
multicast is typically filtered out) a TCP/IP transporter 
and bridge are used (described later in the Bridges 
subsection). Because of the connectionless nature of IP 
multicast, the distribution is robust in that the network 
connection can be unreliable and the user application 
will still function, although without network updates at 
some times. 
 
As events are created, they are tagged ``reliable'' or 
``unreliable'' designating how they should be sent. 
Object creation and deletion are always sent reliably.  
Object changes are sent reliably or unreliably based 
first on whether the modification is relative or absolute.  
Relative changes have an ordering and each one is 
important, so those are sent reliably. Absolute changes, 
such as the constant updates of a user position, are 
mostly sent unreliably since if one is missed, the next 
would overwrite it anyway—periodically these changes 
are sent reliably.  This policy makes the assumption 
that the implementation of IP networking in a real 
operation may drop IP packets often, making reliable 
multicast expensive, and so we don't send events 
reliably unless we think it is truly necessary. Figure 4 
shows the flow of events between applications. 
 
Channels 
 
If simply implemented as described above, the event 
distribution mechanism will send all events to every 
application, which would replicate the entire database 
inside every application instance. Creating copies of 
every object for every user and updating those replicas 
would swamp the network with information many users 
would not care about anyway.  To avoid this situation, 
we have devised an approach of partially replicating the 
database to minimize the amount of unwanted data 
distributed to each application instance. 
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Figure 4. Event distribution between applications. Arrows show event movement. 

 
 
 
In creating this replication mechanism, we first looked 
at the uses of BARS that drive our policies.  One 
condition to consider is that a mobile user can only see 
so much and deal with information in a relatively small 
radius, so we considered a spatial area-of-interest 
mechanism. It is not necessarily the case that a mobile 
user only cares about objects that can be seen from his 
or her current position in the real world; for example, 
our mobile application includes an overhead map mode 
in which the user can zoom out to an arbitrary height to 
observe objectspossibly hugeradius around the current 
position.  However, it seems that there would be few 
situations in which a mobile user would request for 
objects farther away, at the horizon for example, so for 
most situations, a simple area-of-interest mechanism is 
reasonable. 
 
However, another condition is the type of information 
being distributed. Even if some objects are near to a 
mobile user, they may have importance and only cause 
distraction.  Alternatively, the objects may indeed be 
too far away to be seen, but very important, such as 
with possible sniper locations. For these cases, a simple 
area-of-interest mechanism isn't sufficient.  In an earlier 
paper (Julier et. al. 2000), we described a filtering 
mechanism for mobile augmented reality. This filtering 
mechanism operates on the local object database within 
an application instance. It does not show users objects 
in which they have no interest in order to reduce 
display clutter. In practice, it simply hides objects from 
the user—it does not actually control whether or not the 
application instance holds replicas of these objects or  
receives events related to these objects.  

Keeping these situations in mind, we have developed 
channels. The term is overloaded in the literature, but 
in our system, a channel is a set of related objects.  It is 
implemented as an instance of an event transporter and 
a multicast group designated for that transporter. An 
application can join an arbitrary number of channels 
and create new channels, until all available multicast 
groups are allocated. Figure 5 shows a single 
application using two channels. 
 

 
 

Figure 5. Event distribution using two channels. 
Arrows show event movement. 

 
One example of a channel is a set of objects in a certain 
spatial area. As users move from location to location, 
they can join and leave channels based on spatial areas. 
Another example is the set of hazardous objects; while 
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in the previous example, the application instance would 
replicate only objects nearby, the hazardous objects 
channel could cover a larger area, but only include 
those hazards. Also, BARS incorporates several 
interaction modules that produce subsequent objects. 
One such interactor module is principally responsible 
for real-time, interactive geometric construction. It 
allows users to collaboratively place points and build 
new objects from thosepoints; in this case, the 
intermediate points would not be visible to other users 
because they are placed in a channel only joined by the 
constructing users. Other users would only see the final 
objects.  Another interactor allows a user to draw 
digital ink for interpretation by a multimodal 
interaction system—this ink is turned into new objects 
or user interface commands. In this case, the 
application instance of the user drawing the ink would 
be placed in a separate channel, joined by the 
application to interface with the multimodal system. 
The ink is placed in this channel so that other users 
would not see these sketches out of context. 
 
Bridges 
 
As we alluded to in the previous section with the 
multimodal interaction example, some of our BARS 
applications communicate with other systems. We call 
these applications bridges. Bridges join both the BARS 
distribution system and an external system. They 
translate object creation and change events between 
BARS and external systems. By maintaining tables 
linking BARS objects and these external objects, we 
can represent those objects in BARS and vice-versa. 
Two systems with which we can communicate are the 
Columbia Mobile Augmented Reality System (Höllerer  
et. al. 1999) and the Oregon Graduate Institute's 
Quickset multimodal interface (Pittman et. al. 1996).  
 
 

USING BARS FOR EMBEDDED TRAINING  
 
We have shown how BARS wearable systems and their 
operators can communicate with each other, with 
central data repositories, and with external information 
systems. Although BARS was originally designed for 
providing situation awareness during operations, its 
components can be reused for training in real 
environments by augmenting the real world with 
simulated forces and other factors. 
 
BARS for embedded MOUT training works as follows: 

• Simulated forces are rendered on the display, 
so as the user looks around the real MOUT 
facility, forces appear to exist in the real world 
(within current graphics limitations) even 

though they do not truly exist. At the same 
time, fellow real trainees remain visible.  

• Spatialized audio is piped through the 
headphones to replicate the aural cues that the 
simulated forces would make if they were real. 
These sounds may include footsteps, 
helicopters, and so on. Since the sound is 
spatialized, the user can determine the location 
of the simulated force by listening, like in the 
real world. 

• Interaction with the simulated forces is very 
limited at this time. Real and virtual forces can 
shoot at each other.  

• Simulated forces are controlled through 
various means and are distributed to the 
trainees using the BARS distribution system. 

 
There are several technical challenges to this task, even 
with all of the work already completed for BARS, that 
will be explained further. 
 
Rendering Simulated Forces Realistically 
 
The simulated forces need to appear on the user’s 
display to give the illusion that they exist in the real 
world. There are several inherent problems: model 
fidelity, lighting to match the real environment, and 
occlusion by real objects.  
 
Model fidelity is controlled by the modeler and is 
limited by the power of the machine running the 
application. Although models that can be rendered in 
real time still look computer generated, just like in VR-
based simulations, the limited AR model representation 
capabilities are adequately realistic for embedded 
simulation and training. AR actually has an advantage 
over VR with respect to rendering; the AR graphics 
system does not need to draw an entire virtual world, 
only the augmented forces, so they could potentially be 
more detailed than those in VR-based simulations. 
 
Lighting the rendered forces is a problem we have not 
approached yet. This task would require knowing the 
lighting conditions of the real environment in which the 
model would appear, and changing the renderer’s light 
model to match. Another limitation is the display itself, 
as it is very sensitive to outside light, and even if the 
image is rendered with perfect lighting, it still might not 
appear correctly on the display.  
 
Occlusion of simulated objects by real objects is a 
problem we have tackled, as we feel that this problem, 
more than lighting or model complexity, is the one that 
would ruin the immersion of training using AR. 
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Imagine using an AR training system and seeing a 
simulated force, which is supposed to be behind a 
building, rendered in front of the building. This 
property is actually a feature of AR used for 
operations—it gives the user a way to see through 
walls. However, today’s dismounted warriors cannot 
see through walls, and so in the AR-based trainer, they 
should not see simulated forces that should be occluded 
by real objects.  
 
We solve this problem by using a model of the training 
environment. In using our AR system for operations, 
we know where the user is looking and can draw an 
augmenting model of buildings and features 
superimposed on the real features. In AR for training, 
we simply render this same model in flat black. On the 
computer display, these black features will occlude the 
parts of the simulated forces the user should not see. 
However, since black is the “see through” color on the 
AR display, the user will still see the real world, along 
with the correct non-occluded parts of the simulated 
forces. Figure 6 shows a sequence of images 
demonstrating this technique. Figure 6A shows the real-
world scene with no augmentation. In figure 6B, we 
show the same scene but with simulated forces simply 
drawn over the scene at their locations in the world—
there is no occlusion. It is hard to tell if all of the forces 
are intended to be in front of the building, or if they are 
just drawn there due to limitations of the system. Figure 
6C shows the simulated forces occluded by a gray 
model, however, the model also occludes some of the 
real world. Finally, figure 6D shows the scene rendered 
using a black model, which serves two purposes: it 
occludes the simulated forces properly and, since it is 
the “see through” color, allows the user to see the real 
world instead of the gray model. 
 
Inserting Aural Cues 
 
Since we already have a 3D world model, and we know 
the locations of the user and the simulated forces, we 
can use existing 3D sound libraries to provide 
spatialized audio. We simply attach sound streams to 
simulated forces and update the audio library with the 
positions of those forces and with the user’s listening 
attitude. Open-air headphones naturally “mix” the 
sounds of the real world with the computer-generated 
sounds. 
 
 

 
 

Figure 6. Stages in the development of AR for 
embedded training. 

 
 
Interacting With Simulated Forces 
 
The simulated forces can be controlled in several ways 
including simple animation scripts. However, the 
animations are not reactive and tend to create a simple 
“shooting gallery” type of simulation. They can also be 
controlled by users of immersive VR simulations that 
participate on the same network as the AR user. 
Finally, they can be controlled through Semi-
Automated Force (SAF) systems.  
 
BARS communicates with outside information systems 
using bridge applications, as described in the previous 
section. By creating a bridge application between 
BARS and a SAF system, we can leverage the years of 
work already put into simulating forces for both non-
immersive and immersive VR-based training, and 
interact with those forces in a real training 
environment.  
 
Figure 7 shows a set of BARS applications for an 
embedded training scenario: two trainees using 
wearable systems, a trainee using an immersive VR 
system, an observer using a VR system, and a bridge 
synchronizing the entities in BARS and a connected 
SAF system. The bridge converts SAF entities into 
BARS entities and vice-versa. It keeps those entities 
updated on each side of the bridge as they change by  
converting BARS events into DIS or HLA packets and 
vice-versa. The bridge is not a simple filter for 
converting these events; it must maintain internal state 
information in order to convert the events and packets 
properly. In addition to sharing entity information, the 
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system allows BARS users to engage the simulated 
forces and allows the simulated forces to retaliate. 
 

 
Figure 7. Sharing information between BARS and a 

SAF system using a bridge application. 
 
 

FUTURE WORK  
 
We plan to pursue refinement of the BARS-SAF 
interface to exploit advanced SAF functionality such as 
DISAF human articulation; rather than static human 
models that are positioned similar to toy soldiers. 
 
We also anticipate exploring a mixture of AR 
techniques that we developed for situation awareness in 
real operations with the AR techniques for training. 
While this would no longer mimic the real world (since, 
for example, we can’t really see through walls), we 
hope that in the future, real operations will use BARS 
or one of its descendents. By inserting the enhanced 
AR capabilities into the training system, we can test 
which capabilities are most useful and refine them in a 
controlled environment. 
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