Authoring of Physical Models Using Mobile Computers

Y. Baillot, D. Brown, and S. Julier
Virtual Reality Laboratory, Advanced Information Technology Division
Naval Research Laboratory, Washington DC, USA
{baillot,dbrown, julier} Qait.nrl.navy.mil

Abstract

Context-aware computers rely on user and physical
models to describe the context of a user. In this pa-
per, we focus on the problem of developing and main-
taining a physical model of the environment using a
mobile computer. We describe a set of tools for au-
tomatically creating and modifying three-dimensional
contextual information. The tools can be utilized across
multiple hardware platforms, with different capabilities,
and operating in collaboration with one another. We
demonstrate the capabilities of the tools using two mo-
bile platforms. One of them, a mobile augmented re-
ality system is used to construct a geometric model of
an indoor environment which is then visualized on the
same platform.

1 Introduction

One of the most important consequences of the re-
cent advance in wearable computing systems is the abil-
ity to provide context aware computing. Using a suite
of sensors, computers can detect and tailor their output
to the user’s current state. To achieve this adaptability,
the system must possess user models and physical mod-
els [9]. A user model describe a user’s “internal state”
(such as time of day, topic of conversation, identity of
the participants [7]). A physical model is a description
of the environment and might contain information such
as the location and size of objects of potential interest.
The required level of detail for each model depends on
the application in question. In [9], Starner et al. dis-
cuss how a set of wearable computing projects can be
classified in terms of their reliance on these different
types of models. At one extreme, systems such as the
Remembrance Agent [7] (a text-based prompting sys-
tem) relies almost exclusively on the user model. At
the other extreme mobile augmented reality systems
such as Stochasticks [5] depend on physical models to
achieve accurate registration.

Current mobile context aware systems are largely

spatially oriented. Many PDAs come with applications
which show a user’s position on a 2D map. The Con-
text Compass [10] extends a 2D map with spatialized
information. Mobile augmented reality systems, such
as the Mobile Augmented Reality System [4] and the
Battlefield Augmented Reality System [6] require ex-
tremely accurate 3D physical models. However, despite
the importance of physical models, the issue of build-
ing these models has received scant attention. Indeed,
a literature survey suggests that no current wearable
computer platforms have been utilized to directly build
3D models.

We believe that a mobile computer is an ideal plat-
form from which models can be built for three reasons.
First, the surveying and modeling can happen at the
same time and place, eliminating the transfer of data
between a surveyor and the modeler, which can involve
corruption or misinterpretation of the data. Second,
because the user is constructing a model directly in
the context of the environment where it will used, the
model can be checked right away against the environ-
ment to avoid the verification and re-measuring cycle
between the modeler and surveyor. Finally, a multi-
user collaboration can achieved by naturally extending
the system from one mobile computer to multiple mo-
bile computers.

In this paper, we develop a series of methods for
creating and maintaining 2D and 3D maps using mo-
bile computing systems. Our target platform is the
mobile augmented reality system which is shown in
Figure 1. However, the approach described here can
be generalized in two important respects. First, the
system is mot restricted to a mobile augmented real-
ity system. Many of the techniques can be used on
opaque 3D displays (such as a laptop computer) and
opaque/see-through 2D displays (such as a Xybernaut
system) with or without precise tracking systems. Sec-
ond, because the metaphors rely on the application of
a series of constraints, these constraints can be pro-
vided by multiple users collaborating with one another



Figure 1. The BARS mobile augmented real-
ity system. On the right of the user is the
computer. The HMD is equipped with a GPS
antenna and a USB camera. The insert shows
an image which was taken by a camera placed
at the eye piece of the head mounted display.

to construct a model using a heterogeneous set of mo-
bile computing platforms. Conversely, a single user can
construct a model over a period of time.

The structure of this paper is as follows. Section 2
describes the problem of modelling in more detail. The
new modeling approach is described in Section 3. The
initial implementation is described in Section 4. Re-
sults are given in Section 5 and conclusions are drawn
in Section 6.

2 Problem Statement

Consider the following scenario. A set of users wish
to construct a 3D physical model of an urban environ-
ment. Each user possesses a mobile computer which
has a tracking sensor (position and/or orientation) and
is capable of generating 3D graphics. All comput-
ers are assumed to be networked together. The user
needs to be able to construct simple graphical prim-
itives (points, polygons, boxes, labels and so on) and
have a capability to change the attributes of each prim-
itive while performing data acquisition.

Some of the earliest work in model construction was
carried out using CAD systems. However, CAD sys-
tems are typically designed for desk top computers and
their modeling paradigms cannot be directly transfered
to a wearable platform because the input capabilities
are different. For example precise hand tracking is cur-
rently a problem even if emerging technologies may
soon provide a solution (e.g WearTrack [2]) In addi-

tion, the input paradigm of a CAD system do not fully
exploit the capabilities of a mobile AR system. For
example, with a mobile AR system a user is able to di-
rectly align the generated graphics with the real-world
to validate the model.

The authoring methods used in Virtual Reality in-
troduces other difficulties and considerations. Direct
manipulation methods use a metaphor similar to a
sculptor — using a variety of tools a user can create
and place objects out of simple primitives. Constraint-
based methods apply constraints to directly manipu-
lated objects. Some example of such systems are the
Juno-2 constraint-based drawing system [3] or the
VR system Sketch [11] which extends the concept of
a constraint-based user interface by mapping various
types of gestures to types of constraints. However, di-
rect manipulation leads to imprecision because it relies
on the perception of the user to judge how close the
virtual object matches the real object, rather than its
direct visual comparaison to real data. Furthermore,
this type of manipulation needs accurate 6DOF track-
ing of the user’s hand which is a problem. Rather, it is
likely that most gestures can only define selection rays
or cones in the real world. Perception issues have been
reduced by system using constraints.

3 Authoring Techniques

The authoring of the model is conducted in two
steps. First, temporary construction points are located
in the model using one set of techniques. Then, using
another set of techniques, primitives can be built us-
ing these construction points as anchor points. Finally,
models can be modified using additionnal techniques.

A traditional pointing device (mouse, track pad,
touch screen, etc) is used to select points by moving
a cursor on the visible part of the model. When nec-
essary, values can be entered using either a physical or
a virtual transparent keyboard overlaid on the view.
The switching between the different authoring mode
is currently achieved by a menu interface. The model
database is shared among several users equipped with
the system so that the construction can be done collab-
oratively. Several users can work on different parts of
the same model in parallel, or they can help each other
to construct common features. If collaboration is used,
the requests are carried out on a first-come-first-served
basis and interpreted as if coming from a single user.

3.1 Viewingand Manipulating the M odel

Our authoring techniques utilize two visualization
modes for the 3D model: overlay mode and map mode.
The overlay mode (Figure 2) provides the user with a
3D view of the model as seen from the user’s view-
point in the real world. In this mode and if a see-



Figure 2. Normal view of the system. For clar-
ity, we use opaque mode. When the display
is see-through, the virtual objects are super-
imposed on the real world. The three boxes
on the right hand side (trash, createl and cre-
ate0) are part of a direct manipulation inter-
face and are not utilized by the model con-
struction system.

cAsT SOUTH
00
NORTH WEST

~ wB34 Car Park

Figure 3. The map mode shows the current
model in 3D (shown here in top view) in minia-
ture.

through display is used, primitives can be constructed
directly on the model to provide the user a direct view
of the final result in place in the environment. The map
mode (Figure 3) represents a god’s eye view showing
the world in miniature. The position of the map is
such that the user’s location on the map is always cen-
tered on the screen and the map’s initial orientation is
such that the user’s viewpoints on top of model looking
down. In addition the map can be tilted and zoomed
to provide a view of the model from any vantage point.

The system is most effective with accurate tracking
of the user’s position and head orientation in the area
being modeled. However, the system is still useful with
a single or no tracker. In the absence of position and
head orientation tracking sensors, the user’s position
and orientation in the model can be modified using
the mouse. Dragging the mouse up and down moves
the user’s position respectively forward and backward,
while dragging the mouse left and right modifies the az-
imuth of the forward direction to change orientation.
In this configuration, the system is basically used as
desktop authoring tool but has the advantage that it
can be used on the modeling site on a wearable com-
puter.

By adding a position sensor, like a GPS or a pe-
dometer, the position of the user’s viewpoint in the
model can be constrained to the position of the user
in the world. In this mode the mouse is still used as
described previously to control the orientation of the
user in the model. In this configuration, features can
be placed in the model by just walking to the location
and adding the feature. For example, the footprint of
a building can be added to a map just by walking on
the roof of the building with a GPS and adding a point
on the model at the location of each corner.

If position and orientation trackers are both avail-
able, the system can be used as a complete mobile AR
system, which can register the model on the environ-
ment as the user moves in the real world. The user
can focus solely on building the model and not us-
ing a mouse to tweak her viewpoint of the model, as
the viewpoint is automatically updated to be registered
with the real world.

In this mode, the tracking systems must be properly
calibrated, or else the registration between the model
and the real objects will be poor. Calibration involves
calculating transformation to be applied to the posi-
tion and orientation sensor data to properly register
the graphics with the real world. We have developed a
calibration framework which allows us to use any type
of sensor and calibrate the system simply using cali-
bration landmark and virtual/real registration. This is
the object of a future paper [1].

3.2 Creating Construction Points

The user must construct some points and lines at di-
verse locations that represent the vertices of the prim-
itives to be built. These primitives are created tem-
porarily during the model construction and are later
removed. We will now list the techniques we have im-
plemented to specify the locations of the points. In the
following, “selection ray” refers to the line expressed in
model space that passes through the current viewpoint
and the cursor location on the screen.



e Direct coordinates entry. In this mode the

user enters the three-dimensional coordinates of
the new construction point using the keyboard (or
virtual keyboard) in a textbox. The vertex ap-
pears in the model and can be selected like any
other vertices of the primitives in the model. This
mode can be used to enter the first vertices of a
model to use as reference points, which user will
most likely have measured with a tape measure or
range finder.

Surface intersection. A vertex can be created at
the intersection of the selection ray and the surface
it first intersects in the model. This provides the
user with way to locate new vertices on the ground
or on any surface of the model. For example, the
corners of a window on a wall of a building already
in the model can be located using this capability.
Lines intersection. This mode allows the user
to create a vertex at the intersection of two con-
struction lines. Each construction line is added
by pointing on the screen to cast a ray (Figure 4).
Each new line is intersected with the previous lines
to eventually create potentially several intersec-
tion points at a time. A line intersection is de-
tected when the distance between two lines is be-
low a user tunable value. This mode requires that
rays must be cast from at least two locations to
provide an intersection. Because the database is
shared this can be done by two cooperating users
from their respective viewpoints. For example,
two users performing just four selections can iden-
tify the corners of the face of a building.
Distance from two points. This technique
works on the following theory. In a 2D plane,
given two point locations and a distance from each
of them, one can create circles around the points
that have radii equal to those distances. These
circles will intersect in two places, giving two pos-
sible new points. In the 3D model, the user can
select two vertices of the same height—we assume
the plane is parallel to the ground. Then the user
can enter a distance, and by using the above tech-
nique, the system presents two new points. The
user can easily choose which of the new points is
correct. This mode is best used when creating a
floor plan and new vertices can be located in rela-
tion to other vertices using a measuring device.
Distance from three points. This mode is an
extension of the previous one applied to points in
space instead of on a plane. The user chooses three
vertices in the model and specifies a distance. Us-
ing trilateration, two points are identified which
verify the distance constraint (Figure 5). This
mode is convenient when building new vertices

SOUTH

Right click on the cor ucted line fram anoths

Figure 4. Lines intersection technique. Here
two users (the current user’s position is de-
noted by the compass rose at the center of
the screen, the remote user’s avatar is shown
as the light gray box with the label “EP-
SILONUser”) are shooting rays in the envi-
ronment by pointing a common point on the
real world (not shown here). The result is that
the point they identified (bottom right corner
of window 27) is created in 3D. Note that a
single user could do this operation from two
different viewpoints.

without any assumptions on the coplanarity of the
selected vertices with the new vertex.

3.3 Adding Geometric Primitives

Once construction points have been located, they
can be used to build new model primitives. We will
now list the techniques we have implemented to con-
struct new primitives. These techniques can also be
used to select existing primitives for removal. Prim-
itive attributes like position, orientation, scale, color,
label or texture can be modified using the keyboard to
enter the new values.

e Lines. A three-dimensional line can be built in
the model by selecting two anchor vertices as its
endpoints. Connected line segments can be con-
structed by specifying a series of points.

e Contour extrusion. After the user enters the
extrusion height in a textbox, the contour to ex-
trude vertically is traced as a series of line seg-
ments described above. Then the contour is ex-
truded along the line segments. The model of a
room can be constructed rapidly using this tech-
nique when using the overlay mode in the room
for which a model is built. This can be simulated



2

Select blinking vertex fram which is the first distance

Figure 5. By giving the distance from three
points (4, 5 and 8), two points are possible
solutions. The lower point in the image is
currently selected.

Figure 6. By loading a bitmap on the ground
representing a floor plan, the user can locate
vertices by creating intersection points with
the bitmap, drawing the contour and extrud-
ing the walls.

if a bitmap representing the floor plan of the room
is loaded on the ground first. The user can then
draw the contour on the map and extrude the wall
to produce the room (Figure 6).

e Quad. A quad is created by selecting three points.
The first point is one corner of the quad. The sec-
ond point belongs to one of the side of the quad
that is adjacent to the first point. The last point is
on the opposite corner of the quad from the first
point. This constraint guarantees that a unique
orthogonal quad can be found. The size and po-
sition of the quad is constrained by the first and
third point, while the second point constrains its
orientation. This mode is useful for building doors
or windows on buildings because the constraints
help prevent location errors and allow for non-
orthogonality of the wall’s corners.

e Box. A new box is created using a similar tech-
nique to that described for the quad, but with four
vertices. The first face of the box is created using
the first three points as if the user is creating a
quad. The fourth vertex is placed anywhere on
the side of the box opposite to the first side. The
box is then constructed using the location of the
fourth point to determine the depth of the box.
This again guarantees that the box created is or-
thogonal.

3.4 Moaodifying The Model

e Bitmap mapping. A bitmap can be used to tex-
ture a polygon. The bitmap is loaded and is cen-
tered at a point determined by the intersection of
a selection ray with a surface of the model and
its orientation is such that bitmap is on the same
plane as the surface. The bitmap can be arranged
on the surface by mapping any point of the bitmap
to any vertex of the surface of the model on which
the bitmap is applied. The first vertex selected on
the bitmap is mapped to a vertex of the model by
translation only. Any further vertex is remapped
keeping the last vertex fixed. The system perform
the mapping by scaling and rotating the map so
that the new vertex is correctly remapped.

e Attributes modification. Once the geometry
of the model is constructed, the parameters of the
objects can be modified. Example of such param-
eters can be color, label, type and so forth. Geom-
etry (scale, position, orientation) can be modified
as well while it is not the main use of the system.

4 TImplementation

Our research in outdoor mobile AR system required
us to construct a dense model of the environment. In



addition to buildings, we need to model distinct fea-
tures such as windows, doors, electrical switches, or
valves. We have implemented our modeling system
on two systems, a Pentium class pen-based computer
from Fujistsu and a custom 3D stereo mobile AR sys-
tem built for the Battlefield Augmented Reality System
(BARS) project shown Figure 1. The modeling appli-
cation is built using the main API we are developing
for BARS.

The pen computer is a standard commercial com-
puter which is able to run 3D graphics at a reasonable
speed in our case. Three-dimensional features are more
conveniently modeled using an AR version of the sys-
tem such as our BARS wearable system. The BARS
wearable is built using an EBX form factor mother-
board equipped with AGP hardware able to produce
stereo imagery. A gyro-based mouse is used as point-
ing device. A see-through HMD is used to overlay
the model in stereo on the real world. A kinematics-
differential GPS and a gyro-based sensor track the
user’s head position and orientation. Finally, a wireless
network device allows the system to communicate with
others like it to share the model database. The user
can do all the modeling alone in this case, or she can
collaborate with others using similar units to build the
model faster.

Several authoring method requires individual ver-
tices of the model to be selected. A selection cone
whose axis passes through the viewpoint (A) and the
cursor (B) is formed in the reference frame of the
model. We have the problem that the user could be
pointing at a number of different vertices in this cone.
We choose a vertex as follows. The vertex C of the
model that allows forming the smallest angle between
the vector AB and AC is considered as selected. This
compensates for pointing errors, which could occur if
only the distance of the vertex to the pointing ray was
considered. This selection is easily implemented using
the selection buffer in the graphics hardware to iden-
tify the limited quantity of vertices that project on the
screen in the neighborhood of the cursor.

5 Results

Most of the techniques presented in this paper are
exact in the sense that what the user input is what
is going to be created. For example, the direct co-
ordinate entry method involves the user entering co-
ordinates which precision relies only on the way the
coordinate has been measured. We do not focus of the
result of using these techniques because they are not
novel in their concept, rather they have been gathered
from different systems and adapted into a unique mo-
bile system.

We used the pen computer to create the vertices

(a) The laboratory.

(b) 3D map.

Figure 7. The test environment. The 3D model
was constructed for an augmented reality test
bed and the geometry of the laboratory is
known very precisely.

of buildings floor plan on the NRL base. One user
was equipped with a laser range finder and the com-
puter, while another was standing on the other side
of the dimension to measure with a mirror. We used
the distance from two points and three points meth-
ods described earlier to compute the positions of new
vertices. Using this technique we created the vertices
of the contours of four buildings and extruded them
to their measured height in less than an hour. This
method gave us good results for the contour of the
building floor plan because the range finder gave us
centimeter accurate measurements.

We tested our wearable BARS system by construct-
ing the model of the interior of the NRL virtual reality
laboratory shown in Figure 7. At the time of this pub-
lication, we chose this model over an outdoor model
for several considerations. First an accurate model of
the inside of the lab has been constructed using tape
measuring, therefore, a precise comparison of the quan-
titative performance of the modeling techniques can
be made. In contrast, our outdoor model is still inex-
act because of the large distances to measure. Second,
our tracking system inside (InterSense IS900VET) is
much more precise that our GPS/inertial hybrid out-
door. However, because the model and the operating
area indoor is scaled down, one can expect that the er-
rors on the resulting model will be scaled comparably
with respect to a system operating outdoors. Finally,
operating inside allows us to eliminate hardware prob-
lem such as capturing video outdoors or the inadequate
contrast of our HMD (Sony Glasstron) when used in a
sunny day.

The main technique used on the mobile AR sys-
tem to create vertices is line intersection. Figure 8
shows the user creating a point on the corner of the
workbench through line intersection and incorporating
that point into a quad which corresponds to the face



Figure 8. Creating a model of the workbench.
(a) The user aligns cross with corner of work-
bench and a previously entered intersection
line; (b) A second line is made and a construc-
tion point formed; (c) A construction point se-
lected as part of the quad; (d) The final model.

Figure 9. The resulting model. The true model
is the lighter gray line, the measured model
the darker gray line.

of the workbench. The final model of the VR lab is
shown in Figure 9. These results show that the model
is accurate, given the perspective of the mobile AR
user. However, the GROTTO (large cube-like struc-
ture) shows significant errors. These arise from the
fact that, within the indoor environment, the user is
restricted to stand in a small area. As a result, paral-
lax is limited. Therefore, small angular errors can lead
to large modeling errors. However it should be noted
that, from the user’s operational area, such modeling
errors are small and not visually disturbing. We are
working on a formal description of the errors involved
in the model which will be the object of another paper.

Modeling errors are not only due to head tracking
accuracy. We realized that using a mouse cursor to
point object can lead to several problems in fact. If
the field of view of the graphical projection is not ex-
actly equal to the one of the display, the pointing angle
will be incorrect. If the distortion of the display is not
negligeable or if the centering of the graphical viewport
on the center display is biased then the pointing angle
will be incorrect as well. The problem of the field of
view and the distortion can be simply solved by using
a crosshair at the middle of the display rather than a
mouse cursor to point features. This has also the ad-
vantage to avoid the user to have his hand fixed when
pointing. The centering of the viewport is a manu-
facturing problem but can be solved programatically
using viewport tunning calibration techniques.

6 Conclusions

This paper has described an authoring toolkit which
can be used to create 3D physical models of an urban
environment by one or mobile users who are in that
environment. The toolkit, which employs a variety of
point and constraint techniques, can be utilized across



different types of mobile platforms with different capa-
bilities.

While the AR system is more intuitive and easier to
operate than the pen system, problems occur due to in-
adequacies of current mobile tracking systems. Errors
in the tracking involve errors in the displayed model
and in the selection rays, which in turn produce errors
in the model created. The modeling errors are more
sensitive to orientation tracking errors, which are un-
fortunately also the most important. The influence of
orientation errors is reduced as the user approaches the
target points because the angular displacement is re-
duced and that produces a smaller position error on the
point. However, that distance cannot be too small in
many cases. For example, if the target points are defin-
ing a window on a building, and the user approaches
the building to reduce error due to a high angular dis-
placement, the GPS-based position tracking becomes
imprecise because it does not see as many satellites
when too close to walls.

The system which was described here can be im-
proved in a number of important respects. First, more
sensing modalities can be used. For example, if a user
is given a camera visual information can be obtained.
This could be used to generate textures or could be
combined with a photogrammetric system (such as
PhotoModeler) to assist in the model building process.
Head-mounted laser range finders can also be used to
more precisely localize the point positions.

In addition it is not clear that WIMP-type interfaces
are effective with mobile systems. As Rhodes notes [§],
WIMP-type interfaces assume fine motor control, large
screen area and a concentration on the user interface.
To solve this issue, we are working to improve the us-
ability of the system through the use of multimodal
inputs which fuse both gesture and speech.

Finally, while our database support hierachy of ob-
jects, we currently do not support the capability to
constrain the attitude of a modeled object with respect
to a parent object. This capability can be usefull if an
object attitude has to be changed. It would be prefer-
eable in this case to manipulate only a local referential
to which this object is attached instead of changing
the attitude of every primitive of the object. We are
investigating different techniques to solve this problem.

References

[1] Y. Baillot. A calibration and modeling framework
for mobile augmented reality systems. In preparation,
2002.

[2] E. Foxlin and M. Harrington. WearTrack: A Self-
Referenced Head and Hand Tracker for Wearable
Computers and Portable VR. In Proceedings of the

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Fourth International Symposium on Wearable Com-
puters (ISWC ’00), pages 155-162, Atlanta GA, USA,
16 —17 October 2000.

A. Heydon, and G. Nelson. The Juno-2 Constraint-
Based Drawing Editor. Technical Report SRC-131a,
Digital Systems Research Center, Palo Alto CA, USA,
December 1994.

T. Hollerer, S., Feiner, T. Terauchi, G. Rashid and D.
Hallaway. Exploring MARS: Developing indoor and
outdoor user interfaces to a mobile augmented real-
ity system. Computers and Graphics, 23(6):779-785,
December 1999.

T. Jebara, C. Eyster, J. Weaver, T. Starner, A. Pent-
land. Stochasticks: Augmenting the billiards experi-
ence with probabilistic vision and wearable computers.
In Proceedings of First IEEE Internationonal Sympo-
sium on Wearable Computers (ISWC ’97), Cambridge
MA, USA, 13-14 October 1997. IEEE Press.

S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and
L. Rosenblum. Bars: Battlefield augmented reality
system. In Proceedings of the NATO Symposium on
Information Processing Techniques for Military Sys-
tems. NATO, October 2000.

B. Rhodes. The wearable remembrance agent: a sys-
tem for augmented memory. In Proceedings of First
IEEE Internationonal Symposium on Wearable Com-
puters (ISWC °97), pages 123-128, Cambridge MA,
USA, 13-14 October 1997. IEEE Press.

B. J. Rhodes. WIMP Interface Considered Fatal. In
Proceedings of the IEEE VRAIS 98 Workshop Inter-
faces for Wearable Computers, 15 March 1998.

T. Starner, B. Schiele, B. J. Rhodes, T. Jebara, N.
Oliver, J. Weaver and A. Pentland. Augmented re-
alities integrating user and physical models. In Pro-
ceedings of the 1998 International Workshop on Aug-
mented Reality, San Francisco CA, USA, November
1998.

R. Suomela and J. Lehikoinen. Context compass. In
Proceedings of the 2000 Fourth International Sympo-
sium on Wearable Computers (ISWC ’00), pages 147—
154, Atlanta GA, USA, October 16-17 2000. IEEE
Press.

R. C. Zeleznik, K. P. Herndon and J. F. Hughes.
SKETCH: An Interface for Sketching 3D Scenes. In
Proceedings of SIGGRAPH ’96, pages 163170, Los
Angeles CA, USA, 1996. ACM.



