
An Environment to Support Micro-Incremental

Class Developmenty

Allen Parrish

David Cordes

Dennis Brown

The University of Alabama

Department of Computer Science

Box 870290

Tuscaloosa, AL 35487

July 1995

Abstract

Incremental development and testing is widely cited as one advantage of the object-oriented
paradigm. To date, most of the work in this area emphasizes incremental development at the
\macro" level, i.e., at the application or class hierarchy levels. We believe that incremental
development should also be exploited at the individual class level. In particular, classes may
contain a variety of methods that place objects of the class into relatively complex states. By
organizing and developing an individual class in an incremental fashion, one can (a) develop and
test \partial classes" and (b) generate simple states for test objects prior to generating more
complex ones. This process realizes two bene�ts: it simpli�es debugging by reducing the size of
the search space when tracking down defects, and it makes regression testing more e�cient.

This paper reports on a development environment designed to support \micro-incremental"
class development. This environment integrates several di�erent components and techniques.
We discuss each component of the environment individually, and then illustrate the use of the
environment in a case study.

y Research supported in part by the National Science Foundation under grant CDA-9322010.

An Environment to Support Micro-Incremental

Class Development

1 Introduction

Incremental development and testing is widely cited as one of the many advantages in the object-

oriented paradigm. However, most previous work emphasizes incremental development at the

\macro" level, i.e., at the application or class hierarchy levels [4]. Because individual classes are

themselves often nontrivial, we believe that it is useful to de�ne \micro-incremental" techniques

to be used when developing and testing individual classes. Such techniques allow the developer to

build and test subsets of class operations, rather than waiting until after the class is written to

begin testing (as is the case with most existing class testing methods [1, 2, 5, 6, 11]).

In this paper, we present an environment to support micro-incremental class development.

Our environment utilizes formal speci�cations, requiring that the class under test be algebraically

speci�ed [3, 7]. The environment uses a formal speci�cation language called LOBAS [1]. Our

environment synthesizes three major components:

� A class generator,

� A development ordering generator, and

� A test oracle generator.

The class generator produces a partial C++ class from a LOBAS speci�cation. While the entire

implementation is not produced, a structural template for the class is generated. The development

ordering generator produces a recommended ordering of the class's methods, presenting the order

in which the methods should be developed in order to maximize the amount of testing which can

be performed during development. Finally, the test oracle generator produces a driver program

which executes a series of test cases on the class, providing results in terms of whether a given test

case \passes" or \fails."

The remainder of this paper is organized as follows. Section 2 provides an overview of the basic

framework used in class testing with algebraic speci�cations. Section 3 introduces the concept

of micro-incremental development and presents some micro-incremental development techniques.

Section 4 then introduces our environment and describes how the environment can be used to

construct a debugged implementation for a formally speci�ed class.

2 A Basic Framework

2.1 Object-Oriented Programming and Algebraic Speci�cations

Our model of object-oriented programming is similar to the model used in the object-oriented test-

ing discussion in [1]. We use the term class to refer to the implementation of an abstract data type

within an object-oriented language. An object is an instance of a class. A class implementation

1

is de�ned in two parts: an interface consisting of a list of operations that can be performed on

instances of the class, and a body consisting of the implementation of the operations. The imple-

mentation of an operation is sometimes called a method, and invoking an operation with respect

to a given object is sometimes referred to as \sending a message" to the object, which responds

to the message by executing its method. Additionally, every object has a state, which may be

characterized by its history of method invocations.

Numerous class testing techniques have been developed for classes that have been formally

speci�ed using algebraic speci�cation techniques. The ordered list class in Table 1 is speci�ed using

a language called LOBAS [1].

class OrderedList
export

Create, Add, Delete, Head, Tail, Member, Length
constructor

Create;
Add(v: Integer);

transformer

Delete(v: Integer);
Head;
Tail;

observer

Member(v: Integer): Boolean;
Length: Integer;

var

L: OrderedList;
v, v1, v2: Integer;

axiom

(1) Create.Add(v).Head = v
(2) Create.Member(v) = FALSE
(3) Create.Add(v).Tail = Create
(4) L.Add(v).Head = if v > L.Head then v else L.Head
(5) L.Add(v).Tail = if v > L.Head then L else L.Tail.Add(v)
(6) L.Add(v1).Member(v2) = (v1 = v2) or L.Member(v2)
(7) L.Add(v).Length = L.Length + 1
(8) Create.Delete(v) = Create
(9) L.Add(v1).Delete(v2) = if v1 = v2 then L else L.Delete(v2).Add(v1)

end

Table 1: Ordered Integer List Speci�cation

The speci�cation requires that all methods be categorized as either a constructor, transformer,

or observer. Observer methods return a type other than that of the class itself; the purpose of

an observer method is to query the contents of an object (e.g., IsEmpty, Length, Top). Con-

structor and transformer methods both return objects of the class itself. The distinction between

constructors and transformers is somewhat subtle and is explained below.

The axioms de�ne the semantics of the class. Sequences of methods separated by dots are

read left to right. For example, the sequence \Create.Add(10).Tail" means that Create is �rst

executed; Add(10) is then executed on the result returned by Create, and Tail is executed on

2

the result returned by Add(10). (This interpretation is very much like the dot notation used in

C++.) As an example, Axiom (3) states that executing the method Create, followed by Add(v),

followed by Tail produces an object that should be (in a correct implementation) equivalent to

the list object produced simply by executing Create. Similarly, Axiom (7) says that given a list

object L, when executing Add(v) on L followed by Length, the result returned by Length should

be the same as the result returned by executing Length on L and adding 1 to the result.

Axioms may be used to derive one sequence from another. For example, the sequence \Create.

Add(10).Add(20).Add(30).Delete(20)" may be reduced to Create.Add(10).Add(30) by re-

peated applications of Axiom (9) using the following sequence of derivations:

Create.Add(10).Add(20).Add(30).Delete(20)) Create.Add(10).Add(20).Delete(20).Add(30)

) Create.Add(10).Add(30).

By understanding derivations such as this one, it is possible to understand the di�erence between

a constructor and transformer method. Constructors represent the \most primitive" sequences of

methods that may be used to produce a particular object state. The axioms should be written in

such a way that it is possible to rewrite sequences of constructors and transformers into sequences

consisting of constructors only. In a correct implementation, it should be possible to produce states

equivalent to every possible object state using only constructors.

We now consider the notion of correctness of a class implementation (e.g., in C++) with respect

to a given LOBAS speci�cation. We say that two method sequences are speci�cation equivalent

if the axioms may be used to derive one sequence from the other. For example, the sequences

\Create.Add(10).Add(20).Add(30).Delete(20)" and \Create.Add(10).Add(30)" are speci�-

cation equivalent as a result of the derivation shown above.

Given the above notion of speci�cation equivalence, we now are able to provide an intuitive

de�nition of the correctness of a class implementation. A class implementation is said to be correct

with respect to a given algebraic speci�cation i� for every pair (S1; S2) of method sequences, S1

is speci�cation equivalent to S2 i� the executions of S1 and S2 within the implementation return

\equivalent" values. Two possibilities exist for the types of the values returned by those sequences:

� The values could be from a built-in type (e.g., integer, character, boolean,
oat), or

� The values could be objects of a user-de�ned class.

The notion of equivalence between values of built-in types is simple, and may be determined

simply by using the built-in equality operator within the implementation language. The notion

of equivalence between objects of user-de�ned classes is much more complicated. In [1], a formal,

theoretical de�nition of object equivalence is given, known as observational equivalence. The basic

idea is that two objects are observationally equivalent if those objects cannot be distinguished in

client code. One possible heuristic for simulating observational equivalence is to implement an

Equal method for the class, whose behavior is similar to that of an equality operator for built-in

types. We discuss the use of such a heuristic in the next section.

3

2.2 An Algebraic Speci�cation-Based Test Execution Model

In this section, we consider a model for test execution based on algebraic speci�cations. We assume

a model similar to that of the ASTOOT system [1]. In this model, a test case is a triple of the

form (S1, S2, tag), where S1 and S2 are method sequences and the tag is either \equivalent" or

\inequivalent," depending on whether or not the sequences are speci�cation equivalent.

For the moment, we will assume that speci�c test cases have already been generated. (The

problem of generating test cases will be addressed later in the paper.) Given that test cases have

already been created, we identify the following basic testing process:

1. For each test case, execute S1 and S2 and determine whether or not they return either

\equivalent" values (the mechanism for assessing this equivalence is discussed below).

2. If the test case is to be considered \OK" (unrevealing of a defect), then either (a) the test case

tag is \equivalent," and values returned by S1 and S2 are actually \equivalent" or (b) the test

case tag is \inequivalent" and the values returned by S1 and S2 are actually \inequivalent."

Otherwise, the test case reveals a defect.

We now discuss the mechanism for assessing the equivalence of two sequences when executed

as part of a given implementation. Provided that S1 and S2 return values of a built-in type, a

test driver can be constructed that automatically compares return values and prints a message as

to whether or not the test case reveals a defect. In particular, consider the test case (B1, B2,

equivalent), where B1 and B2 are as follows:

(B1) Create.Add(10).Add(20).Length
(B2) Create.Add(10).Add(20).Add(30).Tail.Length

It is easy to verify that B1 and B2 are speci�cation equivalent, which implies that the \equiv-

alent" tag is valid for this (hypothetical) test case. Since Length returns an integer (which is a

built-in type), a test for correctness is simply a test to determine whether the integers returned in

both sequences are identical. Thus, we have the following test driver psuedocode:

List a, b;

a.Create(); b.Create();

a.Add(10); a.Add(20);

b.Add(10); b.Add(20); b.Add(30); b.Tail();

if (a.length() == b.length())

output "Test case correct";

else

output "Test case error";

The condition a.length() == b.length() uses the built-in integer equality operator to deter-

mine whether or not the integer results of the two sequences are identical.

On the other hand, if the two sequences both return objects, then a user-de�ned Equal method

must be used to measure equivalence, as was discussed in the previous section. Unlike the built-in

4

equality operator (which should not contain defects), this approach is not fool-proof, in that the

user-de�ned Equal method may itself contain errors. However, the testing process will (ideally)

reveal any such errors, e.g., if a test case fails and there is no defect in the methods that are

explicitly a part of the test, the defect must be in Equal.

The test driver constructed in a situation where the sequences return objects is conceptually

the same as the test driver above. In particular, consider the test case (C1, C2, equivalent), where

C1 and C2 are simple modi�cations of B1 and B2 above (length has been removed):

(C1) Create.Add(10).Add(20)
(C2) Create.Add(10).Add(20).Add(30).Tail

C1 and C2 are indeed speci�cation equivalent, given that both lists are ordered. Thus, the

\equivalent" tag in this test case is valid. Unlike B1 and B2, both C1 and C2 return lists, i.e.,

objects of a user-de�ned class. The driver will need to utilize a user-de�ned list equality method

to compare the stack results. In C++, the == operator may be overloaded for the list class. After

performing such overloading for class List, the resulting test driver appears below:

List a, b;

a.Create(); b.Create();

a.Add(10); a.Add(20);

b.Add(10); b.Add(20); b.Add(30); b.Tail();

if (a == b) // == is defined for class List

output "Test case correct";

else

output "Test case error";

Currently, our method for generating test cases (discussed in Section 3) only generates test

cases with equivalent tags. Because of this, we will drop the tag notation in the remainder of the

paper, and express test cases as simple pairs of method sequences. As is noted in [1], this eliminates

some test cases that may be useful in revealing defects. (The resulting model is actually similar in

power to the DAISTS model [2].) However, there are a number of useful test cases still available,

and our method is not intended to be the �nal testing method used when validating a class, but is

simply a tool to use during development to assist in defect elimination.

3 Micro-Incremental Development

Existing class testing techniques assume that the class under test has already been constructed. A

completed class normally involves a plurality of methods. In a good design, we would not expect

individual methods to be complex [8]. However, many methods are non-trivial, and methods

(whether simple or complex) may interact to produce objects whose states are relatively complex.

Moreover, under a typical development model, the number of failures that occur initially during

testing is relatively high. Tracking down the sources of these failures among a large number of

methods that are interacting in potentially subtle ways can prove to be extremely di�cult.

5

We believe that one of the keys to e�ective debugging support is in the idea of state simpli�ca-

tion. When producing class objects for testing and debugging purposes, objects with simple states

are easier to reason about than are objects with complex states. Not all defects are revealed by

simple state objects; however, many defects revealed by complex state objects are also revealed by

simple state objects. Thus, we are advocating an organization of the class testing process, where

testing progresses from (initially) examining simple state objects to (eventually) examining objects

with states that are more complex.

We identify two possible \state complexity" dimensions around which to organize an incremental

class testing process:

� Structural complexity: The number of di�erent methods that are invoked to produce a given

state.

� Behavioral complexity: The number of method invocations producing a given state.

For example, consider the state produced by invoking \Create.Add(10).Add(20).Delete."

The structural complexity of this state is 3, since there are three methods invoked to produce this

state (Create, Add, and Delete). The behavioral complexity of this state is 4 (the length of the

sequence).

The goal of our incremental testing process can now be more precisely stated: To locate each

class defect using the simplest possible state (in terms of both its structural and behavioral com-

plexity). Our process may be characterized as follows:

1. Execute a series of test cases, where the objects produced by the test are of progressively

increasing complexity.

2. When a test case in the series fails, cease testing until the defect is repaired.

3. Repairing the defect involves modifying one or more methods. Repeat any previously executed

test cases that involve modi�ed methods.

4. Continue testing in this manner until the next defect is revealed (at which point steps 2 and

3 are repeated) or testing is completed without revealing more defects.

This process results in two tangible bene�ts:

� Reasoning about the source of a defect may be conducted in the simplest possible context.

� Regression testing resulting from defect repair is simpli�ed. In particular, if a defect is located

and repaired in the simplest possible state, then the number of methods that have to be re-

executed when retesting simpler states is correspondingly reduced.

We now address the actual mechanisms used to achieve our goal of producing test cases in

increasing order of structural and behavioral complexity. First, to ensure a progression of increasing

structural complexity during test case generation, we need to be able to test iteratively during the

development process. That is, we want to be able to test subsets of methods as those methods

are developed. With our (algebraic) speci�cation-based testing model, the order in which methods

6

are developed directly impacts the amount of testing that can take place prior to class completion.

Thus, a technique is needed to generate the optimal ordering in which methods should be developed

for a given class, if we wish to maximize testing during development.

Second, to ensure test case generation is performed in increasing order of behavioral complexity,

we need to be able to progressively increase the number of method invocations involved in test cases.

Our method for generating test cases directly addresses this.

The remainder of this section is organized as follows. Section 3.1 discusses a method for gen-

erating an optimal ordering in which methods should be developed, thus addressing the structural

complexity dimension. Section 3.2 discusses a method for generating test cases in increasing order

of behavioral complexity, thus addressing the behavioral complexity dimension. Finally, Section 3.3

discusses the integrating these techniques to de�ne an overall testing methodology.

3.1 Selecting a Development Ordering

A development ordering is an arrangement of class methods that identi�es the order in which the

methods should be developed. As discussed above, the selection of such an ordering is determined

using the goal of permitting as much testing as possible as early as possible. This allows testing to

take place as (small) subsets of methods are written, as opposed to deferring testing until after all

methods have been coded.

Not all development orderings are equally good in terms of permitting periodic testing. To

illustrate, consider the following speci�cation for a simple stack class:

class Stack
export

Create, Push, Pop, Top
constructor

Create;
Push(v: Integer);

transformer

Pop;
observer

Top: Integer;
var

s: Stack;
v: Integer;

axiom

(1) not (s.Push(v) = Create)
(2) s.Push(v).Pop = s
(3) s.Push(v).Top = v

Table 2: Integer Stack Speci�cation

Now consider the development ordering Create! Pop ! Top ! Push. In this case, no testing

is permitted until all methods are complete. In order to construct test cases using a given axiom,

all of the methods in that axiom must be present; however, Push is present in every axiom. Thus,

it is impossible to construct any executable test cases for the class until after all methods are

7

completed (since Push is constructed last). Create! Push! Pop! Top would be a much better

development ordering, in that there are opportunities for testing earlier (and more often) in the

development process. With this ordering, the developer could:

1. Develop Create and Push and then construct test cases using axiom 1.

2. Test the methods Create and Push.

3. Develop Pop and then construct test cases for Create, Push and Pop using Axioms 1 and 2.

4. Test the method Pop, and perform additional tests on Create and Push. (Additional testing
on Create and Push might be necessary because of the new states generated by including
Pop in the test cases.)

5. Develop Top and then construct test cases for all four methods using all three axioms.

6. Test all methods in the class.

More generally, given a development ordering M1, M2, M3,...,Mn, we attempt to maximize:

1. The number of Mis for which new testing is possible (i.e., testing that was not possible to

perform after constructing Mi�1), and

2. For each Mi after which testing is permitted, the number of axioms available for constructing

test cases.

Item (1) deals with maximizing the number of opportunities in which testing may occur, while

item (2) deals with maximizing the amount of testing that can take place at a given opportunity. We

call an opportunity to test a test point. A test point at position i in a development ordering means

that it is possible to construct and execute test cases after developing the ith method that were not

executable after the i-1th method in the ordering. In the stack example, with the ordering Create

! Push ! Pop ! Top, there are test points after Push, Pop and Top; each method introduces

new testing opportunities, as additional axioms may be used in the production of test cases. There

is no test point after Create because no test cases can be produced from the axioms with just the

Create method.

By developing methods in an order which maximizes both the number of test points and the

amount of testing which may occur at a given test point, we are able to design the testing process

so that testing can take place on subsets of the methods. This allows us to test in the context of

reduced structural complexity. As methods are added, we increase the structural complexity of our

test cases in a gradual, orderly fashion.

We now provide a simple greedy-style algorithm to select development orderings in this fashion.

To de�ne this algorithm, we �rst have the notion of an axiom-method table. This table is simply

a dynamic table of those methods that appear in each axiom that have not yet been selected for

the recommended development ordering. That is, position (1) in the table initially contains those

methods that appear in Axiom (1); position (2) initially contains the methods that appear in Axiom

(2), etc.

8

In order to conduct any testing at all using our model, it is necessary to have two special

methods: a method that returns objects \from scratch" and an equality operator. We call methods

that return objects without requiring an input object a base constructor. We assume that a

base constructor and an equality operator are both developed �rst, and thus omit them from the

axiom-method table. To avoid confusion, we call the base constructor Create and the equality

operator Equal, although in our target implementation language, it is possible to implement both

as overloaded operators (EQUAL as ==, and Create as a C++ constructor). We consider this issue

further in Section 4.

To illustrate the axiom-method table, we reconsider the ordered list speci�cation from Table 1.

In this case, the only base constructor is Create. Although no equality operator is speci�ed, one

must still be developed to test this class using our test execution model. However, neither Create

nor the equality operator will appear in the axiom-method table for this class. Each position in

the table contains the methods that appear in the the axiom corresponding to that position (minus

Create). The initial value of the axiom-method table appears below:

Axiom Methods

(1) Add, Head
(2) Member
(3) Add, Tail
(4) Add, Head
(5) Add, Head, Tail
(6) Add, Member
(7) Add, Length
(8) Delete
(9) Add, Delete

Table 3(a): Ordered List Axiom-Method Table

The second important concept that we must introduce is the notion of a method table. The

method table contains a record for each method with three attributes: (1) the method name; (2)

the method's test point contribution and; (3) the method's axiom contribution. A method's test

point contribution is simply \yes" or \no," depending on whether a test point is created if that

method is chosen. A method's axiom contribution is the sum of the contributions that the method

makes to each axiom in which it is used. The notion of \contribution to an axiom" is explained

below. The method table is also dynamic, in that once a method is selected for a development

ordering, the method table is updated to re
ect changes that have occurred with respect to the

contribution of the other methods.

The initial value of the method table for the ordered list class is shown in Table 3(b).

The term base constructor is used to distinguish such methods from the LOBAS notion of a constructor, which

is slightly di�erent. Base constructors are very much like the C++ notion of a constructor.

9

Method TC AC

Add no 3.3�3
Delete yes 1.50
Head no 1.3�3
Tail no 0.8�3
Member yes 1.50
Length no 0.50

Table 3(b): Ordered List Method Table

As discussed above, test point contributions (TC) are obtained by noting which methods would

result in test points, if chosen as the next method in the development ordering. Member and Delete

both result in a test point so the test point contribution for both of these methods is \yes". On the

other hand, Add, Head, Tail and Length would not result in a test point if chosen �rst, so their test

point contributions are \no." Axiom contributions (AC) are based on the cumulative contributions

of that method to each axiom. For example, Head (which appears in 3 axioms) receives a 1.3�3,

based on the sum of:

� 0.5 from Axiom 1, because it one of two methods present (and represents one-half of the

methods remaining to be implemented in order to test using Axiom 1).

� 0.5 from Axiom 4, because it one of two methods present (and represents one-half of the

methods remaining to be implemented in order to test using Axiom 4).

� 0.3�3 from Axiom 5, because it is one of three methods present (and represents one-third of

the methods remaining to be implemented in order to test using Axiom 5)

We then have two selection criteria for the next method:

� First, identify methods that make test point contributions, thus permitting an opportunity

to test after that method is constructed. For the above method table, this rule implies we

should only consider Delete and Member as the next method.

� Second, for the methods identi�ed in the previous step, choose the next method based on the

highest axiom contribution, thus maximizing the amount of testing that can be conducted

at a given opportunity. If two methods both de�ne a new test point and both contribute

equally, an arbitrary choice can be made. In this example, both Delete and Member have the

same axiom contribution (1.5), and so we can make an arbitrary choice between the two.

We choose Delete for the �rst method (arbitrarily). We then revise the axiom-method table

and the method table, as is shown below. The method chosen (in this case Delete) is removed

from the axiom-method table. In addition, the method table is revised as follows: (a) Delete is

removed from the table and; (b) the axiom and test point contributions are revised accordingly.

The new axiom-method and method tables are then shown in Table 4(a).

10

Axiom-Method Table Method Table

Axiom Methods Method TC AC
(1) Add, Head Add yes 3.8�3
(2) Member Head no 0.8�3
(3) Add, Tail Tail no 0.8�3
(4) Add, Head Member yes 1.50
(5) Add, Head, Tail Length no 0.50
(6) Add, Member
(7) Add, Length
(8)
(9) Add

Table 4(a): Tables after selecting method Delete

Of the entries in the revised method table that make a test point contribution, Add has the

highest axiom contribution. Consequently, we take Add to be the next method; the revised tables

are illustrated in Table 4(b).

Axiom-Method Table Method Table

Axiom Methods Method TC AC
(1) Head Head yes 2.50
(2) Member Tail yes 1.50
(3) Tail Member yes 2.00
(4) Head Length yes 1.00
(5) Head, Tail
(6) Member
(7) Length
(8)
(9)

Table 4(b): Tables after selecting method Add

At this point, Head has the highest axiom contribution of those methods making a test point

contribution, so it is chosen next. Repeatedly applying this same procedure to the remaining

methods, the �nal ordering (including Create and Equal) is Create ! Equal ! Delete ! Add

! Head ! Tail ! Member ! Length.

This process focuses primarily on subsets of the methods in which it is still possible to conduct

testing, thus allowing us to initially test in the context of structurally simple states involving a

limited number of methods. This testing using simple states may then gradually transition to

testing that involves more complex states.

3.2 Generating Test Cases

Our method for generating test cases involves generating \object states," and then using those

states as inputs to axioms from the speci�cation. Thus, we divide the test case generation problem

into two parts: the problem of generating object states and then the problem of actual test case

construction, using the object states as inputs.

In [10], we �rst described a relatively simple scheme for generating object states. The basic idea

is to identify those methods that have an e�ect on the object state. In LOBAS terms, these are

11

the constructor and transformer methods. In the case of the ordered list class, those methods are

Create and Add (constructors) and Delete, Head and Tail (transformers). It is useful to further

subdivide this group of methods in a slightly di�erent way. Recall from Section 3.1 that a method

is a base constructor if it produces an object from scratch, i.e., without taking an object as input.

To develop our state generation approach, we will need to segregate base constructors from other

constructor/transformer methods. We call the other constructor/transformer methods modi�ers,

in that they take an object as input and modify the object to produce a result.

It is then possible to systematically generate a series of increasingly complex object states.

These states may be used as input to the axioms during testing, as is described later in this section.

To organize the state generation process, we utilize what we call a state tree. Each node in the tree

represents a particular state. The character strings at each node represent the method sequences

used to generate the state (e.g., CAD refers to the state generated by executing Create, followed by

Add, followed by Delete). A partial state tree for our list class is shown in Figure 1.

H

H

H

HH

"

"

"

"

a

a

a

a

a
a

!

!

!

!

!
!

!

!

!

!

!
!

a

a

a

a

a
a

`
`
`
`
`
`
`
`
`
`
`
`
`̀

CAD

C

CTTCTDCTACDTCDDCDACATCAA

CTCDCA

Figure 1: State Tree for Ordered List Class

The states in the tree are generated as follows. First, the base constructor method is executed

to generate the initial (root) state. Next, the states at Level 1 are generated, from left to right, by

invoking the methods at each node. Following the generation of Level 1 states, the states at each

successive level are generated in similar fashion.

It should be noted that other information is needed to generate states than simply the order

of method invocations as de�ned within the state tree. In particular, the sequence CAD indicates

that Create, Add and Delete are to be executed on some de�ned list object. In C++ syntax, the

object is written in front of the method in an invocation (e.g., the L in L.Add(v)). However, each

of these methods (Create, Add, Delete, and Tail) may take other \secondary" parameters. For

example, Add and Delete take a speci�c element value that is to be added or deleted (e.g., the v

in L.Add(v)). In general, there are three types of secondary parameters that can be expected in a

given implementation:

� Parameters of built-in types, such as integer, character, real, boolean, etc.,

� Parameters of a class other than the class under test, and

12

� Parameters of the class under test. In the case of a \binary" method (e.g., concatenate,

which takes two string objects), one of the two parameters may be viewed as the primary

parameter and the other one as the secondary parameter (e.g., s1.concat(s2), where s2

is the secondary parameter). Note that in C++, operator overloading may eliminate the

syntactic distinction between primary and secondary parameters (e.g., s1 + s2).

Our current implementation builds a state tree for the primary object parameter, and ran-

domly produces values for secondary parameters. For built-in types, this essentially involves using

a random number generator; for class objects, this involves generating random constructor and

transformer method sequences. Although this introduces an element of randomness to an oth-

erwise systematic process, we can at least ensure that at least one parameter of the class under

test is being systematically manipulated by method invocation sequences of steadily increasing

complexity.

States produced by this process are used as parameters to the axioms to generate test cases.

Speci�cally, if there is a variable in an axiom of the type of the class under test, then states from

the state tree are used to produce values for the variable in constructing test cases. For example,

consider Axiom (7) from the ordered list speci�cation in Table 1:

L.Add(v).Length = L.Length + 1

Producing test cases from this axiom involves generating a succession of values for L and v.

Using our state tree generation strategy, we can have the following sequence of values that may be

substituted for L (the �rst three levels of the state tree):

L1 Create

L2 Create.Add(10)

L3 Create.Delete(6540)

L4 Create.Tail

L5 Create.Add(10).Add(564)

L6 Create.Add(10).Delete(430)

L7 Create.Add(10).Tail

L8 Create.Delete(6540).Add(543)

L9 Create.Delete(6540).Delete(54987)

L10 Create.Delete(6540).Tail

L11 Create.Tail.Add(237)

L12 Create.Tail.Delete(10)

L13 Create.Tail.Tail

Note that once a value is randomly generated for a parameter, that value is retained for the

parameter within a given subtree. For example, the �rst invocation of Add in every node of the

subtree rooted at CA receives the parameter value \10" (i.e., in L2, L5, L6 and L7 in the table

above).

The object values from the above table may then be substituted back into the axiom to create

a series of test cases:

13

(L1.Add(103).Length, L1.Length + 1)

(L2.Add(653).Length, L2.Length + 1)

(L3.Add(9403).Length,L3.Length + 1)

(L4.Add(120).Length, L4.Length + 1)

(L5.Add(457).Length, L5.Length + 1)

etc.

The progression of states from the state tree is substituted for the leftmost list variable to

appear in each axiom. Substitutions for all other variables are made at random. However, by using

the progression of states generated by our state tree to make at least one substitution, we normally

meet our goal of ensuring that test cases steadily increase in complexity. We acknowledge, however,

that due to the randomness of the remaining substitutions, there will be some exceptions.

The same substitution process takes place for the remaining axioms to generate additional

test cases. We note that, for branching axioms (i.e., axioms that contain an if or some type

of conjunction with multiple exclusive parts), there is no guarantee of testing all branches of the

axiom; testing both branches will normally require that the random values generated for various

variables be appropriate to ensure such coverage. For example, consider the axiom:

L.Add(v).Head = if v > L.Head then v else L.Head

Testing both branches for the right hand side requires that values be generated for v and L such

that v > L.Head and v <= L.Head. It is possible that (eventually) such values will be generated

simply by generating a large number of test cases. However, since this cannot be guaranteed,

our environment (as discussed in Section 4) produces information regarding which branches of the

branching axioms have been tested. In this way, the developer can monitor whether additional

testing is needed.

A �nal question which surfaces involves determining when to stop testing. As we discuss in

Section 4.1, the developer must specify two things when using our environment to generate test

cases: (a) the number of levels in the state tree and (b) which base constructors to use in generating

state trees (as it is possible to generate a distinct state tree for every base constructor). However,

the testing technique does not provide any guidance regarding how to make these two choices;

e�ectively, there is no stopping criterion built into the testing technique. We would expect that

a necessary condition for stopping would be coverage of all branching axioms, as discussed above.

This is consistent with the approach used by DAISTS [2]. However, we certainly do not feel that

this is a su�cient condition.

On the other hand, we are not suggesting that this method should be the only testing method

applied to a class, where a decision would have to be made based solely on our results regarding

whether or not the class had been tested adequately. Instead, this method is a development and

debugging-oriented approach that makes an initial pass at testing classes in an organized fashion

during development. Once the class is completely developed, a more rigorous testing method with

a de�nite completion point could still be applied to the completed class (such as the technique from

14

[1]). Further investigation is needed to determine how extensively testing should be conducted

during development, as well as to determine ways of re�ning or modifying our test generation

strategy. One of the advantages of our overall framework is that it is possible to modify the test

generation strategy (or the development ordering generation strategy) and still retain the overall

bene�t of incremental development within a general framework.

3.3 An Overall Development and Testing Methodology

Our method for generating test cases (in Section 3.2) may be combined with our method for

generating development orderings (in Section 3.1) to create an overall testing approach in the

context of development. In particular, suppose that you have the following development ordering

for the ordered list class as de�ned in Section 3.1 (Equal ! Create ! Delete ! Add ! Head

! Tail ! Member ! Length). A general development and testing process would be as follows:

1. Develop Equal, Create and Delete and generate test cases using Axiom 8 and state tree

generation restricted to these two methods. In particular, the state tree would be linear, with

Delete the only modi�er method in the tree (the generated states would be C, CD, CDD, CDDD,

CDDDD, etc.).

2. Develop Add and generate test cases using Axioms 8 and 9. In this case, the state tree would

be binary, with Add and Delete as modi�ers and Create as the base constructor. States are

produced such as C, CA, CD, CAA, CAD, CDA, and CDD (the �rst three levels in the state tree in

breadth-�rst order).

3. Develop Head and generate test cases using Axioms 1, 4, 8 and 9. At this point, we have three

modi�er methods (Add, Delete and Head), and so the state tree is ternary. States produced

include C, CA, CD, CH, CAA, CAD, CAH, CDA, CDD, CDH, CHA, CHD, CHH (again, the �rst three levels

in breadth-�rst order).

4. Develop Tail and generate test cases using Axioms 1, 3, 4, 5, 8 and 9. Now we have four

modi�er methods (Add, Delete, Head, and Tail), and the state tree is extended appropriately.

5. Develop Member and generate test cases using Axioms 1, 2, 3, 4, 5, 6, 8 and 9. Although we

are able to conduct testing using additional axioms beyond the previous step, the state tree

does not change from before, since Member is not a modi�er method.

6. Develop Length and generate test cases using all of the axioms. Again, the state tree remains

as before; however, we are able to generate additional test cases via the use of Axiom 7.

Thus, we achieve our �rst goal of incremental structural complexity by \testing as we go," before

all of the methods are written, limiting the number of methods that can appear in test cases to just

those which have been written. We achieve our second goal of incremental behavioral complexity

by utilizing a progression of states from a state tree as object inputs to the axioms in constructing

test cases.

15

4 An Integrated Development Environment

4.1 Environment Functionality and Architecture

An integrated environment which supports the class development paradigm described in Section 3

is presently under construction; we currently have a working prototype that we are using for

experimental purposes. In our environment, LOBAS speci�cations are used as input to generate

three separate items:

� A development ordering for the class,

� A \template" for a (partial) class (using C++), and

� A test driver program for a (partial) class.

The notion of a development ordering was discussed extensively in Section 3. A test driver

program is just a program that executes the test cases generated for the class using the techniques

of Section 3.2. The notion of a class template is discussed below.

Let us �rst consider the sketch of the environment's X-Windows interface found in Figure 2.

Figure 2 assumes that we have loaded the stack speci�cation from Table 2 (Section 3.1). We can

generate the development ordering by clicking on the Ordering button, thus resulting in the

con�guration shown in Figure 3.

Now we are in a position to begin development. We begin by clicking the buttons containing

the names of the methods that we wish to develop from the top of the screen. Clicking on Create

and Push indicates that we wish to develop these two methods �rst (as the ordering suggests).

Once we have clicked on both methods, Axiom (1) shifts from the \Inactive" to \Active" windows.

Figure 4 shows the con�guration of the development manager at this point. This con�guration

indicates visually that we have a \partial speci�cation" consisting of Axiom (1) now available for

test generation purposes. Thus, once Create and Push are actually written, we can conduct testing

using Axiom (1) to generate test cases.

To assist in writing Create and Push, we �rst click on the C++ code button. This generates a

\template" for the C++ class, based on information found in the LOBAS speci�cation, as follows:

class Stackf

private:

// Fill in implementation here

public:

void Create(void);

void Push(int v);

g;

void Stack::Create(void)f

// Fill in implementation here

g

void Stack::Push(int v)f

// Fill in implementation here

g

16

DEVELOPMENT MANAGER

Active Inactive

STATUS

Ordering Test Driver DependenciesExit

(2) s.Push(v).Pop = s

(3) s.Push(v).Top = v

(1) not (s.Push(v) = Create)

C++ Code

Figure 2: Initial Con�guration

Our current implementation simply takes the method names from the LOBAS speci�cation and

generates the C++ template accordingly. However, it should also be possible to specify mappings

from LOBAS names to C++ names. For example, it would be appropriate to implement Create

as a C++ constructor rather than as a method called Create. We are currently working on an

enhancement to the prototype that provides the facility to specify such mappings.

At this point, the developer must provide an implementation for the actual data representation

for class Stack, and then implement Create and Push. Once bodies are written for these methods,

testing may begin. Clicking on Test Driver generates another window, where the user is asked

to specify two things:

� The base constructors for which it is desired to generate state trees (e�ectively, how many

di�erent state trees should be generated) and,

� The number of levels in each state generation tree that should be generated.

Once this information is provided, a test driver is generated. This driver executes the test cases

produced by combining the state trees with the axioms, as described in Section 3.2. For every test

case, the driver executes the two sequences found in the test case, and then compares the results of

those sequences to determine whether or not the test case passes (as discussed in earlier sections).

Information regarding any test cases that fail is shown in a separate window. Also, whenever a test

17

Create

Active Inactive

STATUS

Ordering Test Driver DependenciesExit

(2) s.Push(v).Pop = s

(3) s.Push(v).Top = v

(1) not (s.Push(v) = Create)

C++ Code

DEVELOPMENT MANAGER

Pop TopPush

Figure 3: After Generating Development Ordering

case is executed that involves a branching axiom, information regarding which branch of the axiom

is actually tested is also output to the separate window.

Once Create and Push have been debugged, the tester can click on additional methods. Clicking

on Pop causes Axiom (2) to become active, meaning that more testing can now be performed.

Clicking on C++ Code extends the existing class with (a) a prototype for the Pop method and (b)

a function de�nition for Pop with an empty body. The developer may �ll in the contents of Pop,

click on Test Driver , and continue testing as before.

The only remaining button not discussed so far is the Dependencies button. Clicking on

Dependencies allows the developer to de�ne implementation dependencies among the methods.

For example, suppose the developer wishes to implement Top by invoking Pop on a local copy of

the stack and returning the value that is removed. Consequently, there is a dependency in the

implementation (not present within the speci�cation) that needs to be speci�ed. Figure 5 contains

the window where implementation dependencies are de�ned.

By specifying this dependency, the development ordering generator will not allow an ordering

to be constructed that contains Top before Pop. The actual implementation simply will not set

Top's test point contribution to \yes" until Pop has been selected. It should be pointed out that

such an implementation may cause the development ordering algorithm to fail, because there may

be a case where the only method making a test point contribution depends on some method that

hasn't been developed yet. In such a case, the developer is told of the con
ict and the reasons

18

(3) s.Push(v).Top = v

Active Inactive

STATUS

Ordering Test Driver DependenciesExit C++ Code

DEVELOPMENT MANAGER

Pop TopPushCreate

(1) not (s.Push(v) = Create) (2) s.Push(v).Pop = s

Figure 4: After Selecting Create and Push

OK

DEPENDENCIES

Depends OnTop Pop

Push

Pop

Top

CANCEL VIEW

Figure 5: De�ning Implementation Dependencies

19

for it, and is given the opportunity to resolve the con
ict by either changing the speci�cation or

removing the implementation dependency. Failure to resolve the con
ict simply means that testing

will have to be deferred until the class is completed.

4.2 Case Study: Building A List Implementation

As an example illustrating the utility of this environment, we developed a C++ implementation of

the ordered list class. For demonstration purposes, we elected to generate test cases utilizing an

eight-level state tree. As already discussed, the development ordering generated by the environment

(based on our algorithm from Section 3.1) was Create ! Equal ! Delete ! Add ! Head !

Tail ! Member ! Length.

Our development was completed by one of the authors in a relatively non-contrived setting.

In particular, the author was handed the speci�cation and was given the development environ-

ment, with no preparation regarding expected outcomes. The mistakes made were not deliberately

contrived, but were in fact real. A log of the development process appears as follows:

1. The initial step was to build the �rst methods in the ordering: Create, Equal (implemented

as ==) and Delete. No testing was possible until after Delete was completed, as Delete

constituted the �rst test point in the ordering. At this point, we were able to generate test

cases using Axiom 8 and an eight-level state tree (i.e., C, CD, CDD, CDDD, etc., up to eight

levels). All test cases passed.

2. The method Add was developed, allowing test cases to be generated using Axioms 8 and 9

and an eight-level state tree produced by Create (base constructor) and Delete and Add

(modi�ers). All test cases passed.

3. The method Head was developed, allowing us to generate test cases with Axioms 1, 4, 8 and

9 (and an eight-level state tree). Executing the test driver resulted in a segmentation fault,

which upon subsequent examination, was found to be caused by an uninitialized pointer. The

defect was repaired.

4. The test cases from step (3) were repeated. The result was that one of the Axiom 4-based test

cases, (Create.Add(27).Add(540).Head, 540), failed. Because of our incremental approach,

it can be inferred that the defect is in one of three methods: Create, Add or Head (the only

methods involved in the construction and execution of the test case). The cause turned out

to be the Addmethod, in that it did not insert elements in the proper order, but rather simply

maintained the list in random order. This defect was repaired.

5. The test cases from step (3) were again repeated. Again, a similar test case (based on Axiom

4) to the one from step (4) failed, although with di�erent random number integer inputs.

Similar inferences can therefore be made regarding the source of the defect. The cause was

Note that for some test cases, the class equality operator is also involved in executing the test case; however, the

built-in integer equality operator was used in this test case because the two sides of the test case had integer results.

20

that Add now inserted the elements into the list in the wrong order (ascending, rather than

descending).

6. The test cases from step (3) were again repeated, again with a failure on a test case like

the one in step (4) above. The problem this time was that the special case of inserting an

element at the head of the list was not handled properly. The defect was repaired and the

tests repeated with no failures.

7. At this point, the Tail method was added, allowing test cases to be generated with Axioms

3 and 5 (in addition to Axioms 1, 4, 8 and 9, which were already available). Running the

test cases revealed a failure in an Axiom 5-based test case where the integer parameter to

Add equaled the item already at the head of the list. (This test case is too complex to specify

here, given that generating a parameter to Add that was already at the head of the list was a

random event and did not occur early in the sequence of test cases.) This test case was created

and executed using Create, Add, Head, Tail and Equal. Thus, Delete was not examined for

the defect, nor were Member and Length (which are not even written yet). It was eventually

concluded that the defect was the result of an incorrect assumption that if an existing element

was to be added again to the list it should not be duplicated. The axioms, however, imply

that elements may be duplicated. Thus, Add was modi�ed accordingly.

8. Although Delete was not examined directly in the previous step, we realized at this point

that a change to Delete was necessary. The original implementation of Delete removed all

elements in the list of a given value, while the revised implementation only removes one such

element if there are multiple copies. After making these changes and re-running the test cases

from the previous step, no failures were observed.

9. The method Member was added next, allowing test cases to be produced using all of the

axioms except Axiom 7. Test cases were then produced using an eight-level state tree and

axioms 1-6 and 8-9. No failures were observed when executing any of the test cases.

10. Finally, the method Length was added, allowing test cases using all of the axioms to be

generated. Testing was performed using all axioms and all states in an eight-level state tree.

No failures were observed.

The important observation to make about this process is that, cumulatively speaking, there

were actually six separate defects ultimately observed in this class. Although two of the defects

could not have arisen simultaneously (the Add defects where the list was �rst unordered and then

ordered in the wrong direction), �ve of the defects could have co-existed within an initial version of

the class. Isolating and eliminating defects (even relatively straightforward defects such as these)

would have been extremely di�cult in such a context. Our incremental approach provides the

advantage of \divide-and-conquer" when locating and removing defects, which is not available if

testing is deferred until the class is complete.

21

To appreciate the di�erence between incremental and \post-development" class testing, consider

the fact that there were test cases involving two di�erent axioms that failed in the above testing

scenario (Axioms 4 and 5). This allowed us to restrict our attention to analyzing only those axioms,

and only the methods involved in producing test cases with those axioms. With post-development

testing, the various defects in the Add method would have caused failures to occur in most of the

axioms where Add is present (possibly Axioms 4, 5, 6, 7, and 9). In particular, the failure to add an

element properly to the head of the list would have resulted in de�nite failures in test cases based

on Axioms 6 and 7 (the axioms which specify Member and Length). Thus, the developer might have

wasted time looking for defects in Member and Length when none existed. Instead, we eliminated

the Add defect before test cases based on Axioms 6 and 7 were even constructed and executed.

5 Conclusion

In this paper, we have identi�ed an incremental development process for object-oriented class devel-

opment. We call this type of process \micro-incremental" to re
ect the idea that it is incremental

with respect to developing the internals of a single class. We believe that this type of process is

both natural and important to the development of classes, which may contain methods that interact

in complex ways. Identifying an incremental process of this type simpli�es regression testing and

makes the defect removal process more e�cient.

Future work will involve the development of additional development ordering and test case

generation strategies as alternatives to our current strategies. We acknowledge that there are limi-

tations to the current strategies, and intend to consider alternatives that �t within this paradigm.

Our development environment is constructed to provide an overall framework where other testing

strategies may be substituted without sacri�cing any of the advantages of incremental development.

A primary goal of our future work is to experimentally evaluate a number of di�erent incremental

development strategies over a wide variety of classes; our environment provides a framework for

such evaluation.

References

[1] Doong, R. and P. Frankl. \Case Studies on Testing Object-Oriented Programs," Proceedings
of the Fourth Symposium on Software Testing, Analysis and Veri�cation, October 1991, pp.
165-177.

[2] Gannon, J., P. McMullin, R. Hamlet. \Data Abstraction, Implementation, Speci�cation and
Testing," ACM Transactions on Programming Languages and Systems, vol. 3, July 1981, pp.
211-223.

[3] Guttag, J., J. Horning, and J. Wing, \The Larch Family of Speci�cation Languages," IEEE
Software, vol. 4, no. 5, September, 1985, pp. 24-36.

[4] Harrold, M., J. McGregor and K. Fitzpatrick. \Incremental Testing of Object-Oriented Class
Structures," in Proceedings of the International Conference on Software Engineering, 1992.

22

[5] Ho�man, D. and C. Brealey. \Module Test Case Generation," Proceedings of the ACM SIG-
SOFT '89 Third Symposium on Software Testing, Analysis and Veri�cation, December 1989,
pp. 97-102.

[6] Jalote P. \Testing the Completeness of Speci�cations," IEEE Transactions on Software Engi-
neering, vol. 15, May 1989, pp. 526-531.

[7] Liskov, B. and Guttag, J. Abstraction and Speci�cation in Program Development, McGraw-
Hill, New York, 1986.

[8] McGregor, J. and D. Sykes, Object-Oriented Software Development: Engineering Software for
Reuse, Van Nostrand Reinhold, 1992.

[9] Parrish, A., D. Cordes, and H. Dyal. \Incremental Testing of Algebraically Speci�ed Object-
Oriented Software Modules," Department of Computer Science Technical Report, The Uni-
versity of Alabama, 1995.

[10] Parrish, A., D. Cordes, and M. Govindarajan, \Systematic Defect Removal from Object-
Oriented Software Modules," in Proceedings of the Seventh International Software Quality
Week Conference, San Francisco, May 1994.

[11] Zweben, S., W. Heym, and J. Kimmich, "Systematic Testing of Data Abstractions Based on
Software Speci�cations," Journal of Software Testing, Veri�cation and Reliability, Vol. 1 No.
4, Jan-Mar 1992, pp. 39-55.

23

