
Dirt Cheap 3D Spatial Audio

Eric Klein1 Greg S. Schmidt12 Erik B. Tomlin1 Dennis G. Brown1

1Virtual Reality Laboratory, Naval Research Laboratory, Washington, D.C.
2ITT Advanced Engineering & Sciences, Alexandria, VA

Abstract

The advent of affordable sophisticated audio solutions
for the home PC market has paved the way for low-cost
true three-dimensional spatial audio, which can produce a
sound effect from any 3D position source. The home en-
tertainment market has guided the development of audio
solutions for PCs through hardware support for stereo and
Dolby R©Surround Sound versions 4.1, 5.1, and 7.1. How-
ever, these solutions provide sound panning only in a pla-
nar configuration, typically around the user’s entertainment
room. The drivers for these home-market cards (e.g. Direct
Sound) do not have support for non-planar configurations.
There are other cards and drivers available that provide true
3D spatial audio, but they are geared for the professional
user market and have steep price tags over one thousand
dollars. We explain how to use inexpensive consumer-level
hardware and free software for Linux to build a true 3D spa-
tial audio system.

1 Introduction

Many computer systems set up for advanced gaming in-
clude DolbyR©Surround Sound. The typical speaker con-
figurations are 4.1 (4 speakers and 1 subwoofer), 5.1, and
7.1. This system is designed for all speakers to be located
on a plane centered at the listener, and thus it is not possible
to have a sound truly be emitted from above or below the
listener–although some systems attempt to simulate that ef-
fect. Imagine a game scenario where a monster is climbing
down a wall above and behind the player, while at the same
time, a mouse is scrambling across the floor behind the lis-
tener. In a planar surround system, the sound effects for
both the monster and the mouse would come from the rear
speakers, making it hard to distinguish the actual locations
of the sound sources. With true 3D spatial audio, the mon-
ster’s sound effects could be played from speakers located
to the back-upper-left and the mouse’s sound from speakers
located to the back-lower-left and back-lower-right. The
player will have a much better feel for what is creating the
sound and where the sound is coming from then with tra-
ditional DolbyR©Surround Sound. Now the player can arm
the rocket launcher and turn towards the back-upper-left di-
rectly and blast the monster–no need to aim towards the

harmless mouse running across the chamber floor behind.

Spatial sound has been available for several years and is
primarily employed in immersive virtual environments. The
systems are not in mass-scale production and often must be
installed by professionals, making them costly and out of
the reach of most home users. We have devised a low-cost
true 3D spatial audio solution that requires only inexpensive
consumer-level hardware and open source software. This
solution allows arbitrary placement of speakers, not neces-
sarily co-planar like other systems. Our 3D spatial audio
solution is the first that we are aware to provide true 3D
sound at such a low cost. We describe the hardware and
software we used and how we set up, configured, and tested
the 3D spatial audio solution.

2 Background on 3D Spatial Audio

Preliminary technology for 3D spatial audio, Fantasound
[2], was first developed for the movie industry in the late
1930s by Disney. Over the years a great deal of work has
been done to advance the field, especially by the Dolby cor-
poration. In the last few decades, researchers enabled per-
sonal computers to emit spatial audio. Today spatial audio
is commonplace in modern computer games. Home sys-
tems typically use headphones or a planar array of speakers,
usually in a preset configuration, such as DolbyR©Surround
Sound 5.1.

Headphones present a unique opportunity to provide in-
expensive 3D audio. Algorithms that use head-related trans-
fer functions (HRTFs) [10] can create convincing 3D spa-
tial audio on headphones using a simple stereo sound card.
HRTFs use data about how sound is transformed by the
user’s body (especially the shape of the ears) for mapping
sounds with 3D positional sources. The technique relies
heavily on applying different time delays for each ear. Ul-
timately, we decided not to use headphones, because we
needed a system that scaled easily to many users. It was far
more practical and cost efficient to use speakers.

There are a number of high-cost professional-grade hard-
ware packages available (e.g., RME Hammerfall series [9],
M-Audio Delta series [4] and Lake Audio [3]) that provide
true 3D spatial audio. Each package has a cost exceeding
one thousand dollars, boasts high sound quality, and has
a large array of features aimed at the professional market.

Although the acoustic quality of these packages is undoubt-
edly higher than that of our low-cost 3D audio solution in
terms of audio clarity and fidelity, both options provide true
3D spatial audio.

When we started putting together a spatial audio sys-
tem, there was no inexpensive hardware and software
combination to produce true 3D spatial audio. While
there are software APIs that allow arbitrary (not neces-
sarily co-planar) positioning of sound sources (for exam-
ple, MicrosoftR©DirectSoundR© [5], the open source com-
munity’s Advanced Linux Sound Architecture (ALSA) [1],
OSS [8], and OpenAL [7]), the low-level drivers only offi-
cially support the co-planar 4.1, 5.1, and 7.1 speaker posi-
tions mentioned earlier. There is no way to tell the drivers
that the speakers have been moved to an alternate configura-
tion, for example, with speakers above or below the listener.
So even though software developers could position a sound
above or below the user’s head, the low-level drivers still
assumes the sound was emitted in a circle around the user’s
head. The bulk of the true 3D spatial audio support comes
from customized APIs.

Tommi Ilmonen at the Helsinki University of Technology
(HUT) developed a 3D spatial audio API called Mustaju-
uri [6] that is built upon the ALSA drivers. The Mustajuuri
API implements Vector Base Amplitude Panning (VBAP),
introduced by Ville Pulkki [12], as the underlying 3D spa-
tial audio model. In short, VBAP is the algorithm respon-
sible for moving a sound across a 3D array of speakers and
making the sound appear to come from a specific direc-
tion. VBAP selects the three speakers closest to the virtual
sound position and calculates the required volumes for each
speaker. See Figure 1 for an example of how VBAP pan-
ning works. Mustajuuri also simulates depth for audio by
using time delays and distance attenuation. This makes it
possible to position a sound anywhere in space relative to
the listener. Mustajuuri has already been used to produce
3D spatial audio using high-end audio cards, but up until
now has not supported low-end audio cards.

3 Hardware Selection and Setup

The hardware needed to set up a low-cost 3D spatial audio
system includes a commodity sound card with certain fea-
tures, speakers, and audio cables. We describe our choices
for hardware components and the steps needed to set up
the hardware. Throughout the discussion, refer to Figure 2
for an illustration of the hardware interconnections, speaker
placement, and wiring.

The first thing to consider is the number of speakers that
are needed to produce 3D spatial audio for a specific appli-
cation. A minimally encompassing setup produces sound
from all directions about the user (left-right, front-back, and
up-down). The speakers can be placed in any configura-

Figure 1: View of 3D spatial audio test case in the immer-
sive room. Visual depictions show from which speakers the
sound is coming for the current view. For each sound, the
three speakers closest to the virtual sound source are used
to play the sound. Their volumes are varied based on the
distance from the speaker and a number of other factors.

tion, but setting up the 3D audio panning functions is not
as simple for irregular configurations. We decided to use
eight speakers in a cubic configuration (each speaker at a
vertex of the cube) as shown in Figure 2. There is nothing
special about the speakers needed for this task–the choice
is a matter of budget and taste. We used eight amplified
commercial-grade speakers for the simple reason that we
already had them in our lab.

The eight speakers require a sound card that can produce
eight channels of audio. Of the low-cost commodity audio
cards, the only candidates are the 7.1 cards. We chose the
Creative Labs Audigy 2 card which we found available (at
the time of writing) for as low as $90 USD. Although it
is possible to produce eight independent channels of audio
using more expensive sound cards, the Audigy 2 card is the
only commodity card we are aware of that has drivers in
place to support what we are doing.

It is important to understand the outputs from the card.
In a typical DolbyR©Surround Sound 7.1 speaker arrange-
ment, there are two front speakers (left and right), two side
speakers, two rear speakers, a center speaker (that sits in
front above the video screen), and a subwoofer channel (the
“.1” speaker). The Audigy 2 ZS has three analog output
jacks (1/8-inch mini-phone), labeled 1, 2, and 3, providing
line-level outputs for the eight speakers. Jack 1 is three-
pole, meaning it carries three signals–two signals drive the
front left and right speakers and the third is ground. Jacks
2 and 3 are four-pole, each carrying four signals. Jack 2

Figure 2: Audio Hardware Setup

drives the rear speaker pair and a side speaker, while jack 3
drives the subwoofer, the center speaker, and the remaining
side speaker. One final consideration is that these signals
are unamplified line-level, so the speakers need to be the
amplified type that accept line-level inputs, or a separate
amplifier (or set of amplifiers) should be used between the
sound card and the speakers.

The next step is to install the speakers. Many speakers
designed for surround usage include mounts, but speaker
mounts are available commercially for a number of other
speaker types. In our application, we already had the cubic
infrastructure in place and used custom mounts to attach the
speakers to the cube. The simpler the speaker configuration
(placing them on a regular shape, using 45-and 90-degree
angles, etc), the simpler the software configuration will be–
that process will be explained in a later section.

Finally, the speakers must be connected to the audio card.
How one connects speakers to the Audigy 2 will depend on

the type of speaker and amplification used. A trip to a fa-
vorite electronics store should yield any necessary connec-
tors. In our case, our speakers each have a two-pole 1/4-inch
phone jack, so we needed to split the three combined out-
puts of the sound card into eight separate signals. For Jack
1, we used an easily-available 1/8-inch-stereo-to-dual-RCA
adapter. For Jacks 2 and 3, we found a similar adapters
with four poles and three RCA connectors. These adapters
are most commonly used with camcorders (the three signals
used for composite video and stereo audio). These adaptors
gave us eight separate RCA connectors, and after obtaining
eight long RCA-to-1/4-inch-mono cables, we were set.

In our final configuration, we used an Alesis Studio 32
mixer board. This device fits inline between the audio
card’s outputs and speakers’ inputs and allows fine tuning
of the volume levels. Although the board made it a little
easier to test and tune the audio, it wasn’t truly necessary as
the same adjustments can be made in software.

4 Software Selection and Setup

The software solution for low-cost 3D spatial audio is best
described by the layered hierarchy shown in Figure 3. The
software layers required to interface with the sound cards
include low-level audio drivers and a 3D spatial audio API.
We focused our primary development efforts under Linux
because of easy access to the source code for low-level au-
dio drivers and the overall support community for develop-
ers working on projects like this one.

Figure 3: Audio Driver Layers

For the driver layer, we chose ALSA, which was men-
tioned previously. ALSA provides audio and Musical In-
strument Digital Interface (MIDI) functionality to the Linux
operating system and supports many types of audio hard-
ware ranging from consumer sound cards to professional
multichannel audio interfaces. We selected ALSA since
it appeared to require the least effort to generate the eight
channels we needed for 3D spatial audio. Until we mod-
ified the ALSA driver to access all eight channels, it only
supported 6 channels (5.1) on the Audigy 2. These changes
have been incorporated into ALSA, but may or may not be
in a release version at publication time. In that case, one
can get the latest source and build it–be sure to include the
“emu10k1” sound card argument when using the “./config-
ure” script so that the ALSA driver will recognize the Au-
digy card.

After the driver is set up, the 3D spatial sound API can
be installed. It will distribute sound effects from a given 3D
position to the appropriate audio channels. Although there
are quite a few APIs to choose from, we chose Mustajuuri,
mentioned in the background section. The Mustajuuri soft-
ware works with ALSA and provides 3D panning over an
arbitrary array of speakers using the VBAP algorithm as de-
scribed previously. The Mustajuuri API provides all of the
features needed for a basic 3D positional sound system and
is fairly easy to extend. Over the course of this project, we
made several minor source code modifications and they are
included in the October 2004 release.

Mustajuuri does its magic via a module called the Mixer,

which mixes multiple sound sources (sound files, mi-
crophone inputs, or other sources) into individual audio
streams. These streams are then piped into a panning mod-
ule, which is responsible for routing each input signal to the
appropriate speakers, setting the correct gain and time delay
at each speaker, and mixing multiple streams meant for the
same speaker into a single stream to be sent to that speaker.
It does the routing and gain calculations based on VBAP,
and some additional gain and delay calculations based on
distance. The result is that each incoming sound source to
the panning module leaves to a set of three speakers, and the
resulting sound appears to come from a specific 3D position
in space. Doppler shifting is also simulated.

Once Mustajuuri is compiled and installed, there are sev-
eral tasks that must be performed to configure the software
to work with the given 3D speaker array.

Task 1: Configuring ALSA
ALSA needs to know how to communicate with all eight
channels of the audio card. This would normally be
achieved by simply using the device named “surround71”,
however it is not fully compatible with the spatial sound
API Mustajuuri. Mustajuuri requires support for input
channels. The device “surround71” supports eight output
channels, but not any input channels. Therefore it is neces-
sary to define a new device that has eight output channels
and some input channels.

In order to meet this requirement, an “asymmetric” de-
vice is defined. The device is called “asymmetric” because
the number of input and output channels are not necessar-
ily the same. Note that the number of input channels are
not explicitly stated. ALSA determines the number of input
channels automatically and assigns the maximum (Audigy
card has two).

To configure ALSA, add the following text into the file
“/etc/asound.conf” (or create the file if necessary). This file
holds information about user defined devices, and so we
use the following text to add an asymmetric device called
“eightout”.

ctl.eightout {
type hw
card 0

}

pcm.eightout {
type asym
playback.pcm {

type route
slave.pcm surround71
ttable.0.0 1
ttable.1.1 1

ttable.2.2 1
ttable.3.3 1
ttable.4.4 1
ttable.5.5 1
ttable.6.6 1
ttable.7.7 1

}
capture.pcm {

type hw
card 0

}
}

Next, an environment variable must be set to allow Musta-
juuri to talk to the audio card through ALSA. Set the fol-
lowing environment variable:

export MJ_AUDIO_CONF=
"Input=2=hw:0,0 | Output=8=eightout"

Once this is done, Mustajuuri should be able to output audio
through all eight channels of the audio card.

Task 2: Configuring the Mustajuuri Mixer Panel
Mustajuuri uses a mixer-board style GUI for sending input
audio streams to a speaker array, combining them or just
passing them through intact. The input streams can either
come from sound files or from live sources (such as a mi-
crophone). The GUI lays out several strips of channels that
can be assigned different functions that are applied in a se-
quential process. Some example functions are input, send
(to speaker), amplitude gain, panning and synthesizer. The
gain and panning modify how the audio is distributed to in-
dividual output audio channels.

The Mixer Panel configuration we use can be seen in Fig-
ure 4, which uses two mixer strips. The first has two in-
teresting channels: a synthesizer channel, which manages
the sound files, and a panning module, which handles the
VBAP-based panning across speakers. The second strip is
used to manage remote connections from external applica-
tions and does not accept an audio stream as input. It sends
commands to the synthesizer and the VBAP module.

To create a similar configuration, launch Mustajuuri and
create a new mixer from the “File” menu. This mixer will
have several strips already, and all of these strips will be
essentially blank. The number of strips and the number of
modules per strip can be changed using the “Edit” menu
if needed. Modules can be assigned by clicking with the
mouse on a particular slot. To adjust the module’s proper-
ties, just click on the blue link defining the module’s type
(i.e. “Synth1”, “Mixer Input”, etc.). The “Strip X” button
at the top of a strip can be used to modify and remove the
modules in any slot in that strip. All mixer configuration
changes are saved by using the save options from the “File”

Figure 4: Screenshot of the Mustajuuri Mixer GUI (Tommi
Ilmonen [6])

menu. The resulting configuration file (e.g., SpatialAu-
dio.mj) is specified on the command line (e.g., “./Musta-
juuri SpatialAudio.mj”) when Mustajuuri is called.

Task 3: Specifying Speaker Placement
In order to use VBAP, it is necessary for Mustajuuri to know
the locations of the speakers in the 3D array. Mustajuuri
does this through a configuration file that is specified as part
of the VBAP panning module setup (this module was cre-
ated as part ofTask 2). This file specifies the azimuth and
elevation angles (in degrees) for each speaker relative to the
listener. Since our system uses eight speakers arranged in
a cube configuration, our configuration file is specified as
follows:

3 # dimensionality
Azimuth, followed by elevation.
E.g.,0 0 would be straight ahead.
-45 45 # Front upper left
45 45 # Front upper right
-135 45 # Back upper left
135 45 # Back upper right

-45 -45 # Front lower left
45 -45 # Front lower right
-135 -45 # Back lower left
135 -45 # Back lower right

This configuration file is used by the main configuration
file for the Mustajuuri Mixer. It should be noted that this
file assumes that all speakers are equidistant from the lis-
tener. If this is not the case, it will be necessary to adjust
the gain and delay for each speaker (using the Mustajuuri
Mixer) manually. In our system, this was not necessary and
it would involve significant work if it were necessary. The
easiest solution is to try to place all speakers equidistant
from the ideal listening position (i.e. the center of the envi-
ronment).

Task 4: Configuring Sound File Loader
In order to use a sound file from Mustajuuri, that sound file
must be known to Mustajuuri at load time. The mechanism
used to do that is a configuration file that specifies all sound
files that might possibly be used by Mustajuuri. This con-
figuration file is used by the synthesizer mixer module (cre-
ated inTask 2). A sample configuration file that loads three
sound files follows. Once a file is created, any name can be
assigned, and make sure the synthesizer module points to
that file.

unusevoices *-stk
polyphony 48

sample audioeffect1.wav
sample audioeffect2.wav
sample sudioeffect3.wav

The polyphony line specifies the maximum number of au-
dio files that will be loaded by Mustajuuri (so it should be
at least as large as the number of audio files listed in this
file). The last three lines specify three sample audio WAV
files. Any audio files specified here must be placed in a di-
rectory that is specified separately as part of the synthesizer
module configuration. Note that the “unusevoices” line is a
somewhat more advanced setting, but should help improve
efficiency somewhat.

Task 5: Configuring Mustajuuri for Remote Control
Mustajuuri is designed to act as a standalone program to
manipulate audio, not as a library to be linked against with
another application. In order to control Mustajuuri from an-
other application, as is the case with our project, two steps
are required. The first involves setting up Mustajuuri to lis-
ten for control commands over the network (this task). The
second includes writing a simple API in the main applica-
tion to talk to Mustajuuri (the next task).

To get Mustajuuri to accept commands from the network,
a network module must be loaded. This network module is
the only way for an external application to control Mustaju-
uri, even if both the application and Mustajuuri are running
on the same machine. Adding this module is very simple
and only requires configuring which port Mustajuuri will
listen to (the default port is 10030). This module, which
should have been created inTask 2 above, will automat-
ically communicate with the synthesizer module and the
VBAP panning modules, if they are in the mixer.

Task 6: Interfacing with Mustajuuri API
In order to control Mustajuuri from an application, it is nec-
essary to add code included with the Mustajuuri API into
the application. We present example code segments show-
ing how to connect to a remote audio server, play audio
specified coming from a given 3D position, and change the
position of a sound source and listener position.

The first code segment shows the initial commands to
connect the application to the remote Mustajuuri audio
server and initialize it. If Mustajuuri is running on another
machine, change the address to reflect this. To change the
default port (10030) that Mustajuuri listens to, this is ac-
complished by specifying the new port in the address string
(e.g., “mjserver.mydomain.com:12345”).

The two objects that we created, one instance each of
AC Control and ACVrControl, will be used later to send
commands to Mustajuuri.

// connecting to a remote server
#include <ac_vr_control.h>

AC_Control acControl =
new AC_Control();

char* mjServerAddress = "127.0.0.1";
if(!acControl->init(mjServerAddress))
{

// error handling code here
}

AC_VrControl acVrControl =
new AC_VrControl(acControl);

The next code segment shows how to specify the posi-
tion of the source of the audio and play it. One interesting
thing to note here is that the variable “outputChannel” iden-
tifies the intended sound source to work with. The number
of supported sound sources was specified in the synthesizer
module fromTask 2, and “outputChannel” should be be-
tween 0 and the number of sources minus one. The variable
“soundFilename” should not have a path as part of the file-
name. The filename should be one of the files listed in the
configuration file created as part ofTask 4 (the sound file

loader configuration file). Lastly, the soundLevel is essen-
tially the initial gain level for the new sound. This will need
to be experimented with to find an appropriate setting.

AC_Vector3 location(
positionX,
positionY,
positionZ);

int soundId =
acVrControl->playSample(

outputChannel,
soundFilename,
soundLevel,
location,
true,
0, 0);

The last code segment shows how to reposition the sound
source location and the orientation and position of the lis-
tener. The “outputChannel” variable refers to the sound
source that is desired to be moved, and will be the same
value that was used to call “playSample” from the previous
example. The “listenerRotation” matrix specifies the orien-
tation of the listener relative to the world, and the “worldRo-
tation” matrix specifies the orientation of the world relative
to the speakers.

// reposition a source of sound
AC_Vector3 location(

positionX,
positionY,
positionZ);

acVrControl->moveSource(outputChannel,
0.05, location);

// reposition the listener orientation
AC_Matrix3 listenerRotation(

... listener rotation matrix ...);
AC_Matrix3 worldRotation(

... world rotation matrix ...);

acVrControl->setTransformations(
location, listenerRotation,
worldRotation, 0.05);

5 Hardware Testing and Calibration

We tested the hardware design of our 3D spatial audio sys-
tem by integrating the hardware with our 4-wall immersive
virtual reality room at the Virtual Reality Laboratory, part
of the Naval Research Laboratory in Washington D.C. We
arranged the speakers in a cube array and placed them at

Figure 5: Immersive room depiction showing placement of
speakers in a cube array and audio coming from the user’s
front-upper-right direction (lines are colored red).

the corners of the immersive roon as shown in Figure 5. We
designated a 1.2 GHz Redhat Linux machine as an audio
server and installed in it an Audigy 2 ZS card. We con-
nected the speakers using the cabling described before, and
tried the system both with and without the mixing board
mentioned earlier.

CPU utilization on this machine while Mustajuuri was
running with 3 audio sources in motion was generally less
than 20%, and the memory usage was negligible. Fur-
ther savings could of course be realized by using optimized
compiler settings, rather than the debug settings we used.

We tested the outputs from each speaker to determine the
range of intensities that could be played on each channel.
We listened to each speaker individually for sound quality,
sound balance, and percussive resonance. The easiest as-
pect to listen for is the sound balance between treble and
bass. If one of the two is obviously higher than the other,
adjust the necessary frequency filters as needed. For ex-
ample, if there is too much bass, decrease the bass and/or
increase the treble. If there seems to be excessive low end
or high end noise, adding a low-pass or high-pass filter may
be necessary.

Another easy aspect to listen for is speaker distortion.
Simply put, if the speakers are so loud that the sound pro-
duced is bad, lower the volume of the speaker. If a given set
of speakers will not produce quality sound at an acceptable
volume, it may be necessary to get more powerful speakers.

One of the hardest aspects to listen for is the resonance
of percussive sounds generated by a speaker. This qual-
ity is basically how much the sound echoes from where the
speaker is located. Adjustments have to be made if it sounds
like a speaker is reverberating with percussive sounds. De-
pending on the quality of the speaker, and the quality of the
mixer board, this problem may be corrected to some degree
by continuing to filter the signal. For excessively bad cases,
hard objects such as exposed metal, concrete, hard plastic,

and even glass should be covered with a sound dampening
material like cloth or foam.

Once each speaker is calibrated, the entire setup has to
be balanced. It can either be done with devices designed to
measure acoustic levels or by listening to the speaker from
the pre-determined center of the 3D speaker array. Either
way, the gain of each speaker should be adjusted until the
same audio intensity level is received from each channel.
Keep in mind that the outputs for each channel of the audio
card were customized by the manufacturer for the inten-
sity requirements for each type of speaker (satelite, center,
and subwoofer) normally attached in a surround configura-
tion, and the intensity output for each type differs. There
are many published methods for dealing with this problem,
but we went with the low-tech solution of having some-
one stand and listen at the center of our speaker array. We
set the software control to maximum gain and adjusted the
mixer board based on feedback from the listener. Remem-
ber that these changes can be made in software with the
ALSA drivers and Mustajuuri if a mixing board is not avail-
able.

6 Software Testing

We tested the software by integrating sound into an existing
in-house simulation platform, BARS-Utopia [11], that oper-
ates on a Linux visualization cluster (ORAD Incorporated,
orad-ny.com) which drives our immersive room. BARS-
Utopia supports several virtual world databases, interaction
methods, and spatial audio. However, no support was avail-
able for interacting with the Mustajuuri API in particular, so
we implemented a plugin to bridge the BARS-Utopia spa-
tial audio support with Mustajuuri. BARS-Utopia already
contains all of the information needed by Mustajuuri, such
as sound source positions, listener position and orientation,
and sound source creating/deletion notifications–the plugin
simply translates that data into a form that Mustajuuri un-
derstands.

When the plugin was completed, we tested and debugged
the new system. The primary software adjustments we
made were to the attenuation level of the audio channel out-
puts. Mustajuuri uses a simple attenuation model and re-
quires some manual tweaking for the expected environment
(i.e. outdoor, indoor, time of year, etc.). In the real world,
sound attenuation rates are quite complicated and are in-
fluenced by factors such as temperature, humidity, and the
frequency makeup of the sound.

We tested the sound system by implementing several sce-
narios, each with a different scene dataset and different au-
dio effects attached to an animated object. Before the audio
objects were animated, we evaluated several volume levels
and several distances away for each object. Figure 1 shows
a simple scenario we designed and tested the sound effects

of a car. When we finished testing the volume and distance
effects, we generated an animated path for the car to follow.

Figure 6 shows a more complex scenario with three audio
sources (tank, jet, and helicopter)—the jet is off the screen
and not shown in view. We performed some simple tests
to see how many sound sources interacted together. It was
of primary importance that the jet (typically far away) not
sound too quiet and the tank and helicopter (typically closer
to the camera) not dominate the aureal bandwidth, so some
minor tweaking resulted for both the far and near objects’
attenuation parameters.

7 System Validation

After all of the testing and calibration was completed, we
performed two informal, qualitative user tests that would
help us validate our new low-cost spatial audio system. The
first test evaluated how the new sound system configuration
with eight speakers compared with our previous planar con-
figuration containing four speakers. The prior configuration
simply used the four speakers on the top of the cube array.
We realize that directly comparing these two configurations
is somewhat biased, due to the placement of the 4-speaker
array being located above the user’s head–it would be fairer
to compare against a 4-speaker array located at the height
of the user. However, by using the top four speakers, we
were able to switch between the two configurations without
dismantling our installation.

We performed the experiment by asking a few test sub-
jects to stand in the middle of the immersive room and listen
to sounds played for each configuration. We played differ-
ent sequences of audio on both speaker configurations and
made use of the full range of speakers available. The sub-
jects were not told which configurations were being used,
nor in which order the pairs of configurations were pre-
sented. Several iterations of the pairs of configurations were
tried for each subject. After each pair was presented, the
subjects rated the two systems. Admittedly, this was not a
scientific test as is evidenced by several unaddressed biases,
but all test subjects clearly preferred the 8-speaker configu-
ration.

The second user test evaluated how well the listener is
able localize the source of the audio using the 8-speaker
configuration. Again, the subjects were tested and each
were asked to stand in the center of the immersive room.
Each subject was presented with several sounds played one
at a time and originating from different positions surround-
ing the subject. The subjects were asked to point in the
direction of the sound source, as they heard it. The visual
system was not running, so the users did not get visual cues
as to the sound source’s location. The subjects were able
to localize the sounds with a high degree of accuracy, espe-
cially with respect to elevation.

Figure 6: Shows a user interacting with a scene with multiple sound sources (a tank, helicopter and a jet (not visible)). The
nearest speakers are determined for each sound source and the output is mixed at each speaker (if overlapping).

The implementation of our 3D spatial audio system inte-
grated with our immersive room really enhanced the simu-
lation and training demos we have. Our completed system
has dramatically improved the sense of immersion when
running the demos. A simulation user easily perceives heli-
copters and jets flying overhead and a tank rumbling down
one of the many streets nearby in the virtual world. The per-
ception of depth from the source of audio is conveyed very
accurately and also includes doppler effects. Our system
is a step above a 4-speaker solution we had previously us-
ing the MicrosoftR©DirectSoundR©API. It was also a good
replacement for the very capable but outdated and unsup-
ported 8-speaker solution we had running using another
very expensive hardware and software platform.

8 Conclusions and Future Work

We have devised a true 3D spatial audio solution that is
low cost and has comparable quality to high-end expensive

commercial systems. The 3D spatial audio solution allows
sound effects to be generated from all directions surround-
ing a user, not only planar directions. We accomplished this
feat by using only commodity hardware and open source
software. We feel this feature, now available at an afford-
able price, will create numerous options for game and vir-
tual reality system developers.

We feel our system will lead the way for others to de-
vise similar solutions with current and future commodity
audio equipment. The developer needs only to purchase a
Dolby R©Surround Sound 7.1 audio card, four pairs of low-
cost speakers, and audio cables. We spent less than $150
USD on hardware (Audigy 2 audio card and audio cables)
since we already had speakers available. From start to fin-
ish, including hardware and software debugging, configur-
ing and testing, we spent less than a month developing the
low-cost 3D spatial audio system. We feel that using this
document as a guide, it should be possible to implement

this system in less than a week. Obviously, if a currently
unsupported audio card is used, there will be time and ex-
pertise needed to write a driver for it.

Although the system currently meets our needs quite
nicely, these features would be nice to add to the 3D spa-
tial sound API in the future:

• Directional Sound Cones: Directional sound cones
are a mechanism to provide directional sound with the
strongest intensities propagated along the central axis
of the cone and weakest towards the edges. Since
many sound sources are directional by nature (e.g.,
sound emanated from a megaphone), directional sound
cones would allow these sound sources to be more ac-
curately generated. Also, since some major APIs (such
as MicrosoftR©DirectSoundR©) offer sound cones, it
would be nice to offer such a feature.

• Additional Environmental Reverberation Effects:
Although there are a number of very simple environ-
mental reverberation effects available in the common
3D spatial audio APIs, supporting more sophisticated
effects such as sound reflection and absorption off of
different surfaces would greatly enhance the listening
experience. This is an area of ongoing research, and
the Mustajuuri system would be a good testbed for try-
ing out new techniques.

• Enhanced Sound Attenuation Level: The current
distance attenuation models for sound in Mustajuuri
are quadratic by nature, thus are fairly simple. In the
real world, sound attenuation is much more sophisti-
cated and depends on heat, humidity, sound frequency,
and many other factors. For example, the low fre-
quency sounds generally carry much farther than high
frequency. Accounting for these complexities could
help significantly in providing distance cues.

Acknowledgements

We wish to thank Tommi Ilmonen (Helsinki University
of Technology (HUT)) for support on modifications made
to Mustajuuri. We also wish to thank Bryan Hurley, Si-
mon Julier, Mark Livingston, Yohan Baillot and Jonathan
Sabo for contributions to the research. This research was
sponsored by the Office of Naval Research under contract
#N00014-04-WX-20102.

References

[1] Advanced Linux Sound Architecture (ALSA).
www.alsa-project.org. Last accessed December 14,
2004.

[2] Fantasound. http://en.wikipedia.org/wiki/Fantasound.
Last accessed December 14, 2004.

[3] Lake Audio. www.lakeaudio.com. Last accessed De-
cember 14, 2004.

[4] M-Audio. www.m-audio.com. Last accessed Decem-
ber 14, 2004.

[5] Microsoft DirectX: Home Page.
www.microsoft.com/windows/directx. Last ac-
cessed December 14, 2004.

[6] Mustajuuri: Audio Application and Toolkit.
www.tml.hut.fi/̃tilmonen/mustajuuri. Last accessed
December 14, 2004.

[7] Open Audio Library (OpenAL). www.openal.org.
Last accessed December 14, 2004.

[8] Open Sound System (OSS). www.opensound.com.
Last accessed December 14, 2004.

[9] RME Intelligent Audio Solutions. www.rme-
audio.com. Last accessed December 14, 2004.

[10] Richard O. Duda. 3-D Audio for HCI. inter-
face.cipic.uc.davis/CILtutorial/3D home.htm, 2000.
Last accessed December 14, 2004.

[11] S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and
L. Rosenblum. Bars: Batlefield augmented reality sys-
tem. InNATO Symposium on Information Processing
Techniques for Military Systems, Istanbul, Turkey, Oc-
tober 2000.

[12] V. Pulkki. Spatial Sound Generation and Percep-
tion by Amplitude Panning Techniques. PhD thesis,
Helsinki University of Technology, 2001.

	Introduction
	Background on 3D Spatial Audio
	Hardware Selection and Setup
	Software Selection and Setup
	Hardware Testing and Calibration
	Software Testing
	System Validation
	Conclusions and Future Work

