
Dennis G. Brown
dbrown@ait.nrl.navy.mil
Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375

Simon J. Julier
julier@ait.nrl.navy.mil
ITT Advanced Engineering & Sciences
2560 Huntington Ave.
Alexandria, VA 22303

Yohan Baillot
baillot@ait.nrl.navy.mil
ITT Advanced Engineering & Sciences
2560 Huntington Ave.
Alexandria, VA 22303

Mark A. Livingston
markl@ait.nrl.navy.mil
Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375

Lawrence J. Rosenblum
rosenblum@ait.nrl.navy.mil
Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375

Presence, Vol. 13, No. 2, April 2004, 211–221

© 2004 by the Massachusetts Institute of Technology

Event-Based Data Distribution
for Mobile Augmented Reality
and Virtual Environments

Abstract

The full power of mobile augmented and virtual reality systems is realized when
these systems are connected to one another, to immersive virtual environments,
and to remote information servers. Connections are usually made through wireless
networks. However, wireless networks cannot guarantee connectivity and their
bandwidth can be highly constrained. This paper presents a robust event-based data
distribution mechanism for mobile augmented reality and virtual environments. It is
based on replicated databases, pluggable networking protocols, and communication
channels. The mechanism is demonstrated in the Battlefield Augmented Reality Sys-
tem (BARS) situation awareness system, composed of several mobile augmented
reality systems, immersive and desktop-based virtual reality systems, a 2D map-
based multimodal system, handheld PCs, and other sources of information such as
external data servers.

1 Introduction

As computers have become smaller and more powerful, portable, even
wearable, high-performance computer systems for augmented and virtual real-
ity have become feasible. State-of-the-art laptops and small-form-factor PCs
boast processor, memory, disk, and graphics hardware that rival supercomput-
ers from only five years ago. These PCs can be built into wearable (but still
bulky) computer systems for individuals that provide information through a
head-worn display. The full power of these systems is realized when these sys-
tems are networked with one another and with remote information servers.
For example, a user walking down a street might be able to see the locations of
other users, up-to-date information about prices in shop windows, and even
email (Feiner, 2002). The focus of our research on the Battlefield Augmented
Reality System (BARS) (Julier, Baillot, Lanzagorta, Brown, & Rosenblum,
2000; Livingston et al., 2002) is on the problem of developing information
systems able to provide users with situation awareness, that is, data about the
environment and its contents.

The problem of distributing data to users of wearable systems is somewhat
unusual. Most research into distributed virtual reality focuses on the support of
common, consistent virtual worlds that replace the real world, typically main-
tained by a small number of users. However, the objective of BARS is to sup-
port a consistent information space that augments the real world, one that
does not need to provide a simulated replacement for the real world. There-

Brown et al. 211



fore, data objects tend to be less complicated, contain-
ing mainly semantic information instead of detailed
geometry and textures, and updates may occur less fre-
quently than in virtual environments. Furthermore,
BARS requires a unified architecture that allows trans-
port of general state information that can be used for
many purposes, such as the obvious task of distributing
augmenting information, as well as more general uses
such as “remote control” of applications, in which a
remote device such as a PDA controls another com-
puter. This system must also handle the poor network
connectivity that can sometimes be encountered in mili-
tary operations. Given these parameters, we have devel-
oped a robust, flexible, and general event-based net-
working infrastructure for data distribution. The
mechanism builds upon three techniques: distributed
databases, pluggable transport protocols, and a high-
level management technique known as channels.

The structure of this paper is as follows: The problem
statement and a survey of existing literature are given in
Section 2. Section 3 describes the event distribution
system. Representative performance measurements are
presented in Section 4. Conclusions and future work are
discussed in Section 5.

2 Problem Statement

The Battlefield Augmented Reality System
(BARS) is a collaborative mobile augmented reality sys-
tem designed to improve the situation awareness of, and
the coordination among, members of a team of mobile
users. Improving situation awareness means that each
user obtains a better understanding of the environment
through enhanced sensory perception. The types of data
include the names of buildings, routes, objectives, and
the locations of other users. While short-range radio
communications can accomplish much of this data pre-
sentation, the passive and natural display paradigm of
augmented reality makes the internalization of the in-
formation by an individual faster and easier.

The hardware of a prototype wearable system is
shown in Figure 1. It consists of a wearable computer, a
display, and a tracking system. The computer is respon-

sible for generating 3D graphics and spatialized audio in
real time. The generated graphics are shown on an opti-
cal see-through head-mounted display. The tracking
system determines the position and orientation of the
user’s head, using a Global Positioning System (GPS)
receiver for position and a solid-state inertial navigation
system for orientation. A camera can be used for track-
ing and sending video reports to a base station. The
user operates the system using a cordless mouse and a
wrist keyboard. Wireless 802.11b networking is used for
data distribution and GPS corrections. Future mobile
Augmented Reality (AR) systems will communicate us-
ing a hardened military networking system (North,
Bryan & Baker, 1999), but it is probable that any such
system will still be vulnerable to connectivity and band-
width complications in urban areas, and the distribution
system design reflects that consideration.

The BARS mobile user sees computer graphics super-
imposed on or next to the real objects they are intended
to augment, in addition to status information such as
compass direction and messages from other users. Fig-
ure 2 shows a view using the system, in which another
BARS user is augmented and is following a virtual path.
This application has a number of characteristics that im-
pact the distribution of information and events between
users:

Figure 1. The BARS Wearable.

212 PRESENCE: VOLUME 13, NUMBER 2



● The objective is to provide relevant information,
not a consistent virtual world. The BARS environ-
ment is populated by a set of objects that are self-
contained entities and other types of discrete data.
Each object can be relatively simple, representing a
building type and location, an avatar to symbolize
another user, the location of a hazard, and so on. It
is not necessary to transmit complicated geometric
objects or behaviors—only semantic information.
The latency in the update of an object or an entity
is a secondary consideration.

● Data distribution between users can be hetero-
geneous. Different users might perform different
tasks and thus have different information require-
ments.

● The distribution system should facilitate collabora-
tion between users. In addition to environmental
data, the distribution system must support the
propagation of metadata such as task assignments,
objectives, and personalized messages.

● Users should have the ability to create reports and
update entities in the database. For example, a user
might observe that an environmental feature (such
as a vehicle) is not where the database indicates it
should be. The user should have the ability to move
the object to its correct location.

● Network connectivity is unreliable. As a user
traverses a terrain, reception strength and band-
width may vary.

Given the potential importance of distributed systems
for virtual and augmented reality, a great deal of re-
search has been carried out by various research groups.

The Naval Postgraduate School (NPS) has been
working on large-scale distributed virtual environments
for over a decade, their first version of NPSNET being
shown in 1991. The data distribution in the current
version, NPSNET V (Capps, McGregor, Brutzman, &
Zyda, 2000), uses replicated data and the model-view-
controller paradigm to maintain it. Users of the system
see a view of the entities (models) drawn by a rendering
system. These entities are modified by the protocols
(controllers) that translate network messages into state
changes. New protocols can be loaded at run-time to
extend the behaviors of entities. The packets are sent via
multicast, and the system allows many protocols to
share a single multicast socket. Network traffic is con-
trolled with an area-of-interest manager.

The Distributed Interactive Virtual Environment
(DIVE) system (Frécon & Stenuis, 1998) is designed to
scale to many participants while maintaining a high level
of interactivity at each site. It is based on a peer-to-peer
architecture that uses reliable multicast to maintain a
database that is replicated at each peer. Using a hierar-
chical partitioning of the database, only part of the data-
base can be replicated at some peers. To maintain highly
interactive rates, some copies of the database may be
updated faster than others, but there are mechanisms to
ensure equality over time.

MASSIVE-2 (Greenhalgh, 1996) uses the concept of
a local object, or artifact, and remote views of that arti-
fact. These artifacts are paged in and out of remote ap-
plications. A spatial model of interaction is used, in
which a remote application has a focus that defines a
subgroup of the artifacts to be paged in and out, instead
of copying the entire database. Artifact state changes are
distributed using reliable multicast.

Not all work has been solely for immersive virtual
environments. Some collaborative AR systems have been
built, typically for small groups of colocated users. One
example is the Shared Space system (Billinghurst, Baldis,
Miller, & Weghorst, 1997) for computer-supported
collaborative work using AR.

Figure 2. A sample augmentation.

Brown et al. 213



Typically, users operate closely with one another and
latency requirements are extremely high. Another sys-
tem designed for augmented and virtual reality is
COTERIE (MacIntyre & Feiner, 1996), which provides
useful semantics through its notions of Distributed
Shared Memory and Callback Objects. Distributed
Shared Memory allows many applications to share the
same data objects, while Callback Objects allow applica-
tions to be notified of changes to those data objects—an
event-like mechanism. The Studierstube system (Reit-
mayr & Schmalstieg, 2001) extends the concept
through its use of an extensible scenegraph of applica-
tion objects that is distributed to all users.

3 The BARS Event Distribution System

First, some terms will be defined as they are
used in this discussion. A session consists of one or
more applications, or program instances, which may
exist in any number on one or more machines on a
network. Each application uses a core set of libraries
to maintain a local database of objects and to com-
municate over a network. Applications may also in-
clude modules to read data from sensors, draw the
augmented display, and perform other tasks, depend-
ing on the purpose of the application. The local data-
base is a copy of a master database that is shared be-
tween all applications on the network. The
distribution system is responsible for selectively repli-
cating the master database in all applications.

The distribution system is based entirely on the con-
cept of events. Events are used to instantiate objects (in
effect, to transmit a view of a database between sys-
tems), to update existing objects, and to provide other
non-database status information such as protocol man-
agement data. The event distribution system is based on
three components: replicated object repositories, event
transporters, and communication channels. These com-
ponents will be described below, as will bridge applica-
tions, which communicate with outside information
systems, and some other uses of the event distribution
system.

3.1 Replicated Object Repositories

All of the data for a scenario is stored in an object
repository. The data consists of the mostly static models
of the physical surroundings (buildings, streets, points
of interest, etc.), dynamic avatars that represent users
and other entities, and objects created to communicate
ideas, such as reports of enemy locations, routes for us-
ers to follow, and digital ink. This repository is repli-
cated in whole or in part for each application.

When an application starts, it loads an initial set of ob-
jects from a number of sources, including saved databases,
other applications already running on the network, and
files specified on the command line. The initial set of ob-
jects typically consists of street labels, landmarks, building
information, and other terrain-like information, as well as
an initial set of objectives, routes, and phase markers for
the current task. Since the user is given a database to
start, and everything else in the wearable system is self-
contained, the user will have a working AR system even
if all network connectivity is lost during an operation.

Although network limitations may hamper wireless
communications for the mobile users, there are few lim-
itations on the base users. Base users are those who use
stationary systems and are not mobile, such as users at
fixed command centers. Their applications run on sta-
tionary Virtual Reality (VR) systems such as a desktop
computers, 3D workbenches, and immersive VR rooms.
Using the same distribution system, they can have high
levels of detail and interaction by taking advantage of
the increased bandwidth for replicating more objects
and seeing change events at a higher frequency.

3.2 Event Transportation

The heart of the event transportation system is the
Object and Event Manager. The Object and Event
Manager is responsible for dispatching events within an
application and distributing those events to remote ap-
plications. When the Object and Event Manager re-
ceives an event, it places that event on an asynchronous
event queue. An event-dispatching thread delivers the
event to all the listeners that are subscribed to receive
the specified event type. The event-dispatching mecha-

214 PRESENCE: VOLUME 13, NUMBER 2



nism maintains two sets of data—the set of valid event
types, and the set of listeners registered for each event
type. Because the event system is based on the Java Ab-
stract Window Toolkit event model (Sun Microsystems,
2003) the Reflection Application Programming Inter-
face is leveraged to achieve these steps. Each event type
is implemented in its own class. For each event type, a
listener interface is defined, to be implemented by inter-
ested objects. When an object is registered with the Ob-
ject and Event Manager, its instance type is queried and
it is registered to receive all event types for which it has
implemented listener methods. It is possible to dynami-
cally extend the set of events and listeners handled by
the dispatcher at run-time.

The following is an example of the life of an event
within an application that tracks a user’s position. The
user’s position is updated by calling a method in the
user object to set its pose based on data gathered from
tracking devices. In turn, this method creates an event
that encapsulates the change in pose. The event is en-
queued at the event dispatcher. The dispatcher later
sends the event to all listeners, including the initial ob-
ject itself, as well as other system components (such as
the graphics system, which updates the viewpoint).
Note that the object’s pose isn’t set until it receives the
event back from the dispatcher (the alternative is to set
the position at the same time the event is sent)—this
way, the order of events is preserved. Figure 3 shows
the flow of events within an application.

The propagation of events within a single application
instance has been described above. This event mecha-

nism was extended to allow many separate applications
to trade events by creating Event Transporters. Event
Transporters allow Object and Event Managers in dif-
ferent application instances to send and receive events
over Internet Protocol (IP). Figure 4 shows the flow of
events between applications. If an event is tagged as dis-
tributed, an Event Transporter serializes the event and
broadcasts it to other applications. The Event Trans-
porters in remote applications synthesize the event ob-
ject and dispatch it on those applications’ event queues.
The system uses several types of transporters based on
IP multicast, the Lightweight Reliable Multicast Proto-
col (LRMP) from INRIA (Liao 1998), and a combina-
tion protocol called the Selectively Unreliable Multicast
Protocol (SUMP) that combines IP multicast and LRMP.
Typically, application instances use SUMP on the local
network. To communicate outside of the local network
(where multicast is typically filtered out) TCP/IP trans-
porter and bridge are used (described later in Section 3.4).
Because of the connectionless nature of IP multicast, the
distribution is robust—the network connection can be
unreliable and the user application will still function, al-
though without network updates at some times.

As events are created, they are tagged “reliable” or
“unreliable” designating how they should be trans-
ported. Object creation and deletion events are always
sent reliably. Object changes are sent reliably or unreli-
ably based first on whether the modification is relative
to other changes or not. Relative changes have an or-
dering and each one is important, so those are sent reli-
ably. Non-relative changes, such as the constant updates
of a user’s position, are mostly sent unreliably since if
one were missed, the next would overwrite it anyway.
Periodically, these non-relative changes are sent reliably.
This policy makes the assumption that the implementa-
tion of IP networking in a real operation may drop IP
packets often, making reliable multicast expensive, and
so events are not sent reliably unless they are thought to
be truly necessary.

3.3 Channels

The problem with the event distribution mecha-
nism described above is that all events for all objects

Figure 3. Event distribution within an application: arrows show

event movement.

Brown et al. 215



would be broadcast to every single application. Creating
copies of every object for every user and updating those
replicas would swamp the network with information
that would be irrelevant for many users. To overcome
this problem, the database is only partially replicated in
each application instance.

In creating this replication mechanism, the uses of
BARS drove the policies. One condition to consider is
that a mobile user can see only so far and can deal with
information only in a relatively small radius, so a spatial
area-of-interest mechanism was considered. It is not
necessarily the case that a mobile user only cares about
objects that can be seen from his or her current position
in the real world; for example, a mobile AR application
may include an overhead map mode in which the user
can zoom out to an arbitrary height to observe objects
within a huge radius around the current position. How-
ever, it seems that there would be few situations in
which a mobile user would request information about
objects farther away, at the horizon for example, so for
most situations, a simple area-of-interest mechanism is
reasonable.

Another condition is the type of information that is
being distributed. Even if some objects are near a mo-
bile user, they may not be important and might only
cause distraction. Alternatively, the objects may indeed

be too far away to be seen, but very important, such as
with possible sniper locations. For these cases, a simple
area-of-interest mechanism isn’t sufficient. In an earlier
paper (Julier, Lanzagorta, Sestito, Rosenblum, Höllerer,
& Feiner, 2000), a filtering mechanism for mobile aug-
mented reality was described. This filtering mechanism
operates on the local object database within an applica-
tion instance. It does not show users objects in which
they have no interest in order to reduce display clutter.
In practice, it simply hides objects from the user—it
does not actually control whether or not the application
instance holds replicas of these objects or receives events
related to these objects.

Keeping these situations in mind, channels have been
developed. The term is overloaded in the literature, but
in this system, a channel is a set of related objects. It is
implemented as an instance of an event transporter and
a multicast group designated for that transporter. An
application can join an arbitrary number of channels and
create new channels, until all available multicast groups
are allocated. Figure 5 shows a single application using
two channels.

One example of a channel is a set of objects in a cer-
tain spatial area. As users move from location to loca-
tion, they can join and leave channels based on spatial
areas. Another example is the set of hazardous objects;

Figure 4. Event distribution between applications: arrows show event movement.

216 PRESENCE: VOLUME 13, NUMBER 2



while in the previous example the application instance
would replicate only objects nearby, the hazardous ob-
jects channel could cover a larger area, but only include
those hazards. Also, BARS incorporates several interac-
tion modules that produce subsequent objects. For ex-
ample, one interaction module is responsible principally
for real-time, interactive geometric construction (Bail-
lot, Brown, & Julier, 2001). It allows users to collabo-
ratively place points and build new objects from those
points; in this case, the intermediate points would not
be visible to other users because they are placed in a
channel joined only by the constructing users. Other
users would see only the final objects. Another interac-
tion module lets a user draw digital ink for interpreta-
tion by a multimodal interaction system—this ink is
turned into new objects or user-interface commands. In
this case, the application instance of the user drawing
the ink would be placed in a separate channel, joined by
the application to interface with the multimodal system.
The ink is placed in this channel so that other users will
not see these sketches out of context.

In some cases, a set of applications may need to by-
pass the general event distribution system. “Lightweight
channels” allow specific parts of an application to com-

municate directly over the network. This mechanism is
used to coordinate a specific data set on many machines
at interactive (30 updates per second or higher rates),
such as in a cluster of eight machines driving a stereo
four-wall immersive VR room. In that case, the user’s
viewpoint must be well coordinated between the ma-
chines, because it can be very disorienting to the user if
the walls of the room show differing viewpoints even for
very short amounts of time. For such applications, the
viewpoint, and also the tracked device data (such as
wand position), are sent over lightweight channels to
only the cluster machines. At the same time, the distrib-
uted database continues to be maintained among the
cluster machines and every other application in the ses-
sion using the regular data distribution system as de-
scribed earlier in this section. While the regular distribu-
tion system is not fast enough to maintain interactive
rates when distributing the viewpoint or tracker data, it
can handle database updates across the cluster machines
and the rest of the session applications at reasonable
rates (usually well over five updates per second). More
performance data will be given in section 4. Figure 6
shows how a VR cluster works with the distribution
system.

Figure 5. Application joined to two channels: arrows show event

movement.
Figure 6. Lightweight channels allow machines to share certain

data, bypassing the regular distribution system.

Brown et al. 217



3.4 Bridges

As alluded to in the previous section with the mul-
timodal interaction example, some applications commu-
nicate with external information systems. These applica-
tions are called bridges. They join both the BARS
distribution system and an outside system and translate
object creation and changes between BARS and the
outside system. By maintaining maps between BARS
objects and these outside objects, those objects can be
represented in BARS and vice-versa. Figure 7 shows
how a bridge application fits into a session. Two systems
with which BARS can communicate are the Columbia
Mobile Augmented Reality System (Höllerer, Feiner,
Terauchi, Rashid, & Hallaway, 1999) and the Oregon
Graduate Institute’s QuickSet multimodal interface
(Pittman, Smith, Cohen, Oviatt, & Yang, 1996).

A TCP/IP transporter for this distribution system
was mentioned earlier. Although the system is designed
primarily for IP multicast, sometimes the need to con-
nect to networks that block multicast arises. For this
case there is a simple TCP/IP bridge application that
joins local multicast groups and creates socket connec-
tions to other applications outside of the local network
through TCP/IP Event Transporters. This can be a bit

of a bottleneck, but one TCP/IP bridge per outside
application can be created if necessary, and effective cre-
ation of channels can help limit the amount of data
transferred.

3.5 Other Uses

One final aspect of this event distribution system
to be discussed is its flexibility. Although the system was
designed to carry information about objects in the data-
base, at its heart it is still a distributed event system. The
same base event types and transporters are used for
other purposes. One set of events are “metaevents” to
configure the Event Transporters; a similar set of events
configures channels. Another set of events is used to
distribute the user interface of an application to remote
systems. For example, when a new user is trying out the
mobile system and is unfamiliar with the user interface,
the mobile system can be controlled from another com-
puter (usually a handheld computer or PDA) by sending
and receiving events that are handled by the user inter-
face system. Yet another set of events is used for evalua-
tion test studies: to trigger the tests, the test administra-
tor uses an application configured to control the test
subject’s application This control happens simply by
registering a new set of events and listeners and using
the existing event transport system.

4 Performance Measurements

Now that the mechanisms used to control the net-
work resource usage by the applications have been de-
scribed, the performance of the system will be exam-
ined. The first issue to consider is the impact of using
serialized Java events instead of writing and reading raw
data into network packets through using code tailored
to each event type. The serialized event sizes measured
in a simple test ranged from 776 bytes (for a typical
object-attitude-change event) to 5919 bytes (for a cre-
ation event for a path of twenty points). If specialized
but simple algorithms encoded the data, the attitude-
change event would need at least 60 bytes: 48 bytes for
the six doubles representing the attitude (three doubles

Figure 7. A bridge application allows applications in a BARS session

(two wearable systems, two VR viewers) to interact with data from an

external system.

218 PRESENCE: VOLUME 13, NUMBER 2



each for position and orientation), plus 12 bytes for
three long integers specifying the source, target, and
type of change. The path-creation event in this example
would require at least 492 bytes: 12 bytes for three long
integers to specify source, target, and type of creation,
plus 480 bytes to encode twenty three-dimensional po-
sitions that make the points of the path. So, it appears
that using serialized Java events inflates the event sizes
by an order of magnitude over a simpler hand-coded
system that would be harder to extend. For this research
in augmented reality, having the flexibility to add new
event types at run-time without any specialized code is
important, so the penalty is accepted.

Next, distribution throughput in a set of test cases
designed to simulate typical usage scenarios will be ana-
lyzed. In each test case, there is an existing session of
one to five users. The session uses SUMP (the combina-
tion of LRMP and IP Multicast transporters) to trans-
port events over the network in a single channel. Each
of the users has created six notational objects (five point
objects and a line of many points). A new user joins this
session using 802.11b wireless networking and mea-
sures distribution system throughput in both bytes per
second and events per second (since event sizes vary
quite a bit) for the two transporters. These measure-
ments are taken just after the new application starts up
and after it has been running for five minutes. The test
is repeated for three different user-position-update rates

(how often the users send their positions to the net-
work): 30 updates per second (UPS), 6 updates per sec-
ond, and 3 updates per second. Thus, the independent
variables are the number of users in the session, UPS
rate, and time of measurement. The dependent variables
are bytes per second and events per second measured by
the new user. In reading the test summary, the reader
will notice that the graphs show upper limits of data
throughput rates that do not approach the theoretical
upper limits of 802.11b. The measured throughput is
affected not only by total network load but also by the
speed of the machine collecting data, because it needs
to process each event. Optimizing the implementation
and using a faster machine may produce higher absolute
numbers, but the scalability properties will remain the
same.

As an application starts, it queries the existing applica-
tions in the session for distributed database objects. To
provide redundancy in case of network outage, each
application sends its set of distributed objects using reli-
able events (so in this case, they travel over LRMP).
This technique needs to be improved, however, because
it provides much duplicate data, and grows geometri-
cally in network usage with the number of users; the
LRMP data points in the graphs in Figures 8 and 9
show this effect. The applications also continuously
send, at the specified rate, positional updates, primarily
over the unreliable transport (IP Multicast). When the

Figure 8. Network usage at session start. Figure 9. Event throughput at session start.

Brown et al. 219



existing users are sending thirty positional updates per
second, the distribution system on the data gathering
machine appears to become saturated at four users. The
IP Multicast traffic grows linearly with the number of
users, as expected, except where it actually decreases as
the IP Multicast packets are dropped in favor of the
LRMP packets. This phenomenon can be seen with as
few as three users using the highest update rate in the
test.

As the graphs in figures 10 and 11 show, after the
session has been running for five minutes at the lower
update rates, the total network usage (LRMP and IP
Multicast combined) grows only slightly more than lin-
early with the number of users, as the small, unreliable
updates begin to dominate over time. However, with
high update rates for position, the network remains sat-
urated well after the initial database duplication; remem-
ber that every tenth positional update is sent reliably, so
even after the initial database duplication, there is still
significant traffic using LRMP.

These measurements show that, in the test case of six
updates per second, the distribution system easily kept
up with five users over time. This capacity may seem
insufficient, and with more optimization it can be
greatly increased, as discussed earlier. However, for one
driving scenario—being able to see the locations of
friendly forces—it is more than enough for a small team.
It is clear, however, that using serialized Java events is a

heavyweight way to share data, and that a better opti-
mized networking component using the basic architec-
ture presented could provide much better throughput
in a version of BARS constructed for actual operations.

5 Conclusions and Future Work

An event-based data distribution system imple-
mented for BARS, a mobile augmented reality system,
has been presented. It addresses some requirements en-
countered that developers of networked virtual environ-
ments have not addressed, such as working on unreli-
able network connections, handling many types of users
through its channels, working well in both high-band-
width (immersive VR) and low-bandwidth (mobile AR)
applications, communicating with outside systems
through its bridges, and being flexible enough for non-
database data distribution.

For future work, the channel concept needs to be
developed further. Intelligent algorithms to automati-
cally create channels and join applications to those chan-
nels would be the next step. These algorithms would
take into account such factors as: database object types;
the user’s tasks, location, and short-term interests; and
network conditions. Also, bridge applications to widely-
used military information systems will be created. An-
other area to consider is the problem of “partitioned”

Figure 10. Network usage over time. Figure 11. Event throughput over time.

220 PRESENCE: VOLUME 13, NUMBER 2



data networks (Reijers et al., 2002). This condition
arises when a mobile user (or set of mobile users) is out
of contact for prolonged periods of time. During this
time, multiple state updates have occurred and it is nec-
essary to synchronize the systems again.

References

Baillot, Y., Brown, D., & Julier, S. (2001). Physical model
authoring using mobile computers. Proceedings of the 2001
International Symposium on Wearable Computers, 39–46.

Billinghurst, M., Baldis, S., Miller, E., & Weghorst, S. (1997).
Shared space: Collaborative information spaces. Proceedings
of HCI International 1997.

Capps, M., McGregor, D., Brutzman, D., & Zyda, M.
(2000). NPSNET-V: A new beginning for dynamically ex-
tensible virtual environments. IEEE Computer Graphics &
Applications, 20(5), 12–15.

Feiner, S.K. (2002). Augmented reality: A new way of seeing.
Scientific American, 286(4), 48– 55.

Frécon, E., & Stenuis, M. (1998). DIVE: A scaleable network
architecture for distributed virtual environments. Distrib-
uted Systems Engineering Journal (special issue on Distrib-
uted Virtual Environments), 5(3), 91–100.

Greenhalgh, C. (1996). Dynamic, embodied multicast groups
in MASSIVE-2 (Technical Report NOTTCS-TR-96-8). Not-
tingham, UK: The University of Nottingham, Department
of Computer Science.

Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., & Hallaway,
D. (1999). Exploring MARS: Developing indoor and out-
door user interfaces to a Mobile Augmented Reality System.
Computers and Graphics, 23(6), 779–785.

Julier, S., Baillot, Y., Lanzagorta, M., Brown, D., & Rosen-
blum, L. (2000). BARS: Battlefield Augmented Reality Sys-
tem, Presentation made at NATO Information Systems Tech-
nology Panel Symposium on New Information Processing
Techniques for Military Systems, Istanbul. October.

Julier, S., Lanzagorta, M., Sestito, S., Rosenblum, L.,

Höllerer, T., & Feiner, S. (2000). Information filtering for
Mobile Augmented Reality. Proceedings of the IEEE 2000
International Symposium on Augmented Reality, 3–11.

Liao, T. (1998). Light-weight Reliable Multicast Protocol Speci-
fication (Internet-draft). Institut National de Recherche en
Informatique et en Automatique (INRIA). Retrieved July
27, 2003, from http://webcanal.inria.fr/lrmp/draft-liao-
lrmp-00.txt

Livingston, M. A., Rosenblum, L., Julier, S., Brown, D., Bail-
lot, Y., Swan, J., et al. (2002). An Augmented Reality Sys-
tem for military operations in urban terrain. Proceedings of
the Interservice/Industry Training, Simulation and Educa-
tion Conference 2002, 868–875.

MacIntyre, B., & Feiner, S. (1996). Language-level support
for exploratory programming of distributed virtual environ-
ments. Proceedings of ACM Symposium on User Interface
Software and Technology (UIST 1996), 83–95.

North, R., Bryan, D., & Baker, D. (1999). Wireless net-
worked radios: Comparison of military, commercial, and
R&D Protocols. Proceedings of the 2nd Annual UCSD Con-
ference on Wireless Communications. Retrieved February 9,
2004, from http://www.adiesa.aeema.asn.au/documents/
WirelessNetworkedRadios-ComparisonofMilitary
CommercialandRDProtocols.pdf

Pittman, J., Smith, I., Cohen, P., Oviatt, S., & Yang, T.
(1996). QuickSet: A multimodal interface for military simu-
lations. Proceedings of the 6th Conference on Computer-
Generated Forces and Behavioral Representation, 217–224.

Reijers, N., Cunningham, R., Meier, R., Hughes, B., Gaert-
ner, G., & Cahill, V. (2002). Using group communication
to support Mobile Augmented Reality Applications. Pro-
ceedings of the 5th IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC 2002),
297–306.

Reitmayr, G., & Schmalstieg, D. (2001). Mobile Collabora-
tive Augmented Reality. Proceedings of the IEEE 2001 Inter-
national Symposium on Augmented Reality, 114–123.

Sun Microsystems, Inc. (2003). Java API Documentation.
Retrieved July 27, 2003, from http://java.sun.com/docs

Brown et al. 221


