

Embedded Mobile Augmented Reality Trainer

Within a Distributed HLA Simulation

David Armoza
Dennis G. Brown

Naval Research Laboratory
4555 Overlook Avenue SW

Washington, DC 20375-5320
202-767-3961, 202-404-7334

armoza@ait.nrl.navy.mil, dbrown@ait.nrl.navy.mil

Keywords:

Augmented Reality, BARS, HMD, JSAF, HLA, RTI, Semi-Automated Forces, Embedded Training.

ABSTRACT: The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays
battlefield intelligence information to a dismounted warrior. The primary BARS components include a wearable
computer, a wireless network, and a tracked, see-through Head Mounted Display (HMD). The computer is
responsible for generating graphics to the HMD that appear, from the user's perspective, to exist in the surrounding
environment. Thus, a building could be augmented to show, for example, its name or a plan of its interior. Simulated
entities with which the BARS user might interact can also be displayed.

Joint Semi-Automated Forces (JSAF) is a software system capable of simulating entity level platforms and behaviors
in a heterogeneous, distributed computing environment. This system implements communication between distributed
components of the battle space with the High Level Architecture (HLA). A very important aspect of each is that
interactions spawned by “live,” “virtual,” and “constructive” forces are seamlessly integrated.

In our experiment, we bridge the gap between a user wearing the BARS hardware and constructive entities. We use
the Real-Time Infrastructure (RTI) to distribute and translate entity pose and appearance data between the BARS data
distribution system and JSAF. This interface allows a BARS user to interact with the SAF entities in real time,
including armed engagement. We will discuss the design and implementation of these two interfaces, including
special considerations unique to each, and their applications with respect to embedded training.

1. Introduction

Mobile augmented reality has the potential to
revolutionize live, embedded training. While live
training provides the most realistic experience, it tends
to expensive by virtue of its non-repeatability and
consumed resources. Purely virtual training is useful
but does not yet fully replicate the experience of live
training [1]. However, with mobile Augmented
Reality (AR), it is possible to insert synthetic forces
into live training exercises in a realistic manner. This
approach permits trainees to tactically engage synthetic
forces.

In previous work, we discussed how to insert synthetic
forces into the real world using AR [2]. Once it is

possible for the AR user to interact with synthetic
forces, how are the behaviors of those forces
controlled? Existing Semi-Automated Forces (SAF)
systems are the end result of many man-hours
designing software algorithms capable of simulating
the behavior of military and civilian forces. By
connecting the Battlefield Augmented Reality System
(BARS) to these systems, we have leveraged their
capabilities for use in mobile AR training—the BARS
user appears to the SAF system as another of its
distributed entities, and the SAF entities appear in the
BARS display as synthetic forces. Thus, it can be used
as an embedded training system for multiple areas of
interest. Our preliminary experiments have targeted
simple military exercises for dismounted infantry, but
can be transitioned for homeland defense scenarios,
such as might be needed by first responders.

Figure 2.1 The BARS Wearable System.

We used the Joint Semi-Automated Forces (JSAF)
software system [3] to support research for the US
Navy. The interface with JSAF uses a custom High
Level Architecture (HLA) federate. This paper will
explain how the interfaces were built, and what they
can do.

In section 2, the problem is described in more detail.
The existing BARS data distribution system is
described in section 3. Section 4 describes how BARS
was interfaced to JSAF. Section 5 wraps up with some
ideas for future work.

2. Problem Statement

2.1 Mobile AR For Embedded Training

AR applies virtual reality techniques to the user’s real
world experience by generating, from the user’s
perspective, graphics and sounds that appear to exist in
the surrounding environment. For example, it is
possible to augment the view of a building to show its
name, a plan of its interior, icons to represent reported
hazard locations, and the names of adjacent streets.
Research on BARS [4] has focused on the problem of
developing information systems able to enhance the
user’s situation awareness by providing data about the
environment and its contents.

The centerpiece of BARS is a mobile augmented
reality system that displays head-up battlefield
intelligence information to a dismounted warrior,
similar to the head-up display (HUD) systems designed
for fighter pilot cockpits. The system consists of a
wearable computer, a wireless network, and a tracked
see-through Head Mounted Display (HMD). Three-
dimensional (3D) data about the environment is
collected (through surveying, sensors, or reports by
other users) and made available to the system. By
using a Global Positioning System (GPS) unit and an
orientation tracker it is possible to know where the user
is located and the direction in which he is looking.
Based on this data, the desired 3D data is rendered to
appear as if it were in the real world. Figure 2.1 shows
the BARS wearable system.

In addition to providing real-time situation awareness
data, BARS can render synthetic forces into its real-
world view. Compared to providing situation
awareness data, rendering synthetic forces in BARS
has additional needs because even though the basic AR
functionality is the same, the paradigms required to
solve these problems are very different. In the
situation awareness mode, BARS adds information to

the real-world view that the user would not normally
see. It is necessary for this information to stand out
and appear artificial. In the embedded training mode,
BARS inserts cues into the real-world view that,
ideally, the user could not distinguish from reality. For
example, a team of trainees in a Military Operations for
Urban Terrain (MOUT) training facility could work
together against a simulated enemy force.

Special needs dictated the changes necessary to
accommodate embedded training scenarios in BARS.
These changes were described in more detail
previously [2], but we will summarize them here. First,
the graphics renderer had to be updated to handle
realistic entities, helped by the use of a third-party
human animation system. Second, occlusion models
had to be created to represent the locale in which the
training scenario occurred. These models are used to
properly occlude the synthetic forces as they walk
behind walls, over hills, and so on. Without these
models, the synthetic forces would be visible in
unrealistic ways. Figure 2.2 shows an example of what
a user sees when using BARS for embedded training.
Finally, a tracked weapon surrogate had to be added to
the system. This weapon has the same type of tracker

Figure 2.2 Computer-generated soldier drawn in
the real world.

that tracks the user’s head. When the user pulls the
trigger, the system knows where the weapon is aimed
and can model the effects of firing the weapon
appropriately.

2.2 The SAF-based entity

In our experiment, we used a real-time, time-stepped
simulation built upon the design principles of Modular
Semi-Automated Forces (ModSAF) [5], the
predecessor of JSAF. JSAF is designed to seamlessly
integrate three types of entities. An entity is intended
to represent, within the simulation, a specific instance
of a real-world, physical asset. The entity types that a
SAF simulation is designed to simultaneously
coordinate within a single distributed world are
referred to as “live”, “virtual”, or “constructive”. A
“live” asset represents updates from a real-world object
(e.g., an actual destroyer participating in a naval
exercise). A “virtual” entity is an entity that reflects
the actions of a man-in-the-loop tool. A “constructive”
entity is an entity whose behavior and state are
determined purely from the internal code modules of
the SAF system. The simulation system maintains a
database of SAF-based entities. The entities are stored
in the database fall into two basic categories. The first
category represents the constructive entities that
originate on the local SAF processor. The second
category tracks the state updates of all the other entities
in the simulation, whether they are constructive entities
from other parts of the distributed simulation, man-in-
the-loop simulators, or updates from actual forces. For
the purposes of our discussion, the JSAF dismounted
infantry (DI) entity is an example of a constructive
entity, while the BARS user is an example of a virtual
entity. We shall discuss this database in more depth
below (see section 2.3).

The SAF-based entity represented in the simulation
database is derived from an object-based architecture.
Each entity is a unique instance of a parameterized set
of object models that are joined to create a descriptive
model for an entity type, whether it is a human
infantryman, a tank, or any of the real-world objects
that a simulation tool might need to represent. The
entity is created by joining a set of generic component
models that may or may not be specified at a higher
level of detail through object-oriented inheritance. For
instance, the SAF DI we utilized is created by using a
derived instance of the generic Hull model (upon
which all entities are based). The Hull model contains
the functional interface for the movement of an entity
within the simulation, and provides the frame upon
which other models hang. One of the primary models
that hang upon the Hull is the Turret. The Turret is

typically configured with an arbitrary number of
components (e.g., weapons, sensors, etc.). In the case
of a SAF DI, there is a derived Turret that models the
torso and head of a human through the additional
components “mounted” upon or “carried” by this
Turret:

 Aural sensor model Ears
 Visual sensor model Eyes
 Ballistic Gun model Rifle (M16A)

Furthermore, there are models that represent the
interaction of the SAF entity with the environment and
instantaneous effects. For the SAF DI, this includes
but is not limited to the following models:

• Line of Sight Models: visual occlusion by

buildings and terrain, temporary environmental
effects ranging from time-of-day based light levels
to obscurement from smoke.

• Damage Models: damage effects upon entities or
terrain from indirect and direct fire weapons.

• Weapon Models: determine the chances for
indirect and direct weapon fire to hit a particular
target, whether that be an environmental feature
such as a road or as in our case an enemy
combatant (“red” forces).

• Terrain Models: provide the environment wherein
a DI moves (includes algorithms to deal with
obstacle avoidance, navigating multi-elevation
structures (MES), etc.).

By using these models along with many others, it is
now possible to track entities and allow them to
interact. The interactions can be as simple as those
found in physics-based models (e.g., ballistic
trajectories, etc.) to task-based state behaviors (e.g.,
detection and response to enemy units, etc.).

2.3 Distributed Entities

State information for distributed entities is shared
within the SAF system by using a distributed database,
called the PO (Persistent Object) database [6]. It is an
object-oriented database that provides a localized
interface for the command and behavioral information
that must be shared between the distributed simulation
elements. This database was designed to address
several issues. It allows an arbitrary number of
processing engines to work together in a seamless
fashion. It provides a reliable method for the
thousands of objects that must be tracked in a
simulation to communicate both the “ground truth” of
a simulation along with the command and control (C2)

behavior necessary to organize complex multi-entity
tasks (e.g., unit organization, missions, etc.).

By leveraging the capabilities of the SAF system to
distribute entity information and behavior it is possible
to design scenarios for the constructive entities that can
execute arbitrarily complex behaviors. The complexity
of the tasks supported by the SAF systems at the time
of our prototype development was fairly basic for a DI.
Ongoing efforts in the area of Joint Urban Operations
(JUO) are expected to enhance the capabilities of the
SAF systems to provide better options for embedded
training.

In our case, we were primarily interested in
communicating the existence of a BARS user to the
SAF, thereby permitting SAF entities to properly
interact with the BARS “entity.” To this end, we used
the existing communication protocols that signal the
creation, update and destruction of a remote entity to
the PO database. Thus, the SAF system in question
would have sufficient information to be aware of this
new entity. Conversely, the SAF systems would
transmit entity creation, update and destruction data to
external applications as dictated by their data
distribution models.

Now that we have described the two major pieces (the
mobile AR system and the SAF entities), we will
describe how they were connected, beginning with a
description of the BARS data distribution system.

3. BARS Event Distribution System

The BARS distribution system is based entirely on the
concept of events, which are discrete packets of
information sent between program modules within a
BARS application and across applications. Events are
used to instantiate objects (in effect, to transmit a view
of a database between systems), update existing
objects, and to provide other non-database status
information such as protocol management data. The
BARS event distribution system is described in detail
in [7], so only the relevant features will be described in
this section.

3.1. Replicated Object Repositories

All of the data for a scenario is stored in a distributed
database called the object repository. The data consists
of the mostly static models of the physical
surroundings (buildings, streets, points of interest, etc),
dynamic avatars that represent users and other entities,
and objects created to communicate ideas, such as
reports of enemy locations, routes for users to follow,

and digital ink. This repository is replicated in whole
or in part for each application by sending and receiving
events. When an object changes, only the changed
information is distributed, rather than the entire object
state. A database object is assumed to be “live” until
an explicit “destroy” event is distributed.

When a BARS application starts, it loads an initial set
of objects from a number of sources, including saved
databases, other applications already running on the
network, and files specified on the command line. The
initial set of objects typically consists of street labels,
landmarks, building information, and other terrain-like
information, as well as an initial set of objectives,
routes, and phase markers for the current task. Since
the user is initially given a database to start, and
everything else in the wearable system is self-
contained, the user will have a working AR system
even if all network connectivity is lost during an
operation.

3.2. Event Transportation

The heart of the event transportation system is the
Object and Event Manager. The Object and Event
Manager is responsible for dispatching events within
an application and distributing those events to remote
applications. When the Object and Event Manager
receives an event, it places that event on an
asynchronous event queue. An event dispatching
thread delivers the event to all the listeners that are
subscribed to receive the specified event type. It is
possible to dynamically extend the set of events and
listeners handled by the dispatcher at runtime. Figure
3.1 shows the flow of events within an application.

BARS Database
 Object 1

. .
 .

BARS Database
 Object 2

Event Dispatcher

Object Manager

and

Event Queue

. .
 .

Filter

Renderer

BARS Database Objects BARS System Objects

Figure 3.1 The flow of events within an application.

This event mechanism was extended to allow many
separate applications to trade events by creating Event
Transporters. Event Transporters allow Object and
Event Managers in different application instances to
send and receive events over Internet Protocol (IP).

BARS Database
 Object 1

. .
.

BARS Database
 Object 2

Event Dispatcher

Object Manager

and

. .
.

Filter

Renderer

BARS Database Objects BARS System Objects

Event Queue

BARS Application

Event Transporter

BARS Database
 Object 1

. .
.

BARS Database
 Object 2

Event Dispatcher

Object Manager

and

. .
.

Filter

Renderer

BARS Database Objects BARS System Objects

Event Queue

BARS Application

Event Transporter

. . .

Multicast Group

Figure 3.2 The flow of events between applications.
Figure 3.2 shows the flow of events between
applications. If an event is tagged as distributed, an
Event Transporter serializes the event and broadcasts it
to other applications. The Event Transporters in
remote applications synthesize the event object and
dispatch it on those applications' event queues. The
system uses transporters based on IP multicast and
TCP/IP.

It is through bridge applications that we connect BARS
to JSAF. We will describe this application next.

of Applications
BARS Network

AR Wearable
System

AR Wearable
System

VR Viewer

Application

VR Viewer

Bridge

entity state information

External SAF System

Figure 3.3 A bridge application and other

applications.

As events are created, they are tagged “reliable” or
“unreliable” designating how they should be
transported. Object creation and deletion events are
always sent reliably. Object changes are sent reliably
or unreliably based first on whether or not the
modification is relative to other changes. Relative
changes have an ordering and each one is important, so
those are sent reliably. Non-relative changes, such as
the constant updates of a user’s position, are mostly
sent unreliably since if one were missed, the next
would overwrite it anyway. Periodically, these non-
relative changes are sent reliably. This policy makes
the assumption that the implementation of IP
networking in a real operation may drop IP packets
often, making reliable multicast expensive, and so
events are not sent reliably unless they are thought to
be truly necessary.

4. Connecting JSAF and BARS

4.1 Overview of HLA

The High Level Architecture (HLA) is an IEEE
standard [8] that was developed as a means by which
the Modeling and Simulation (M&S) community could
share a common architecture for distributed modeling
and simulation. There are three underlying portions of
this framework; the rules, the federation interface
specification, and the object model template. The HLA
federation interface defines the common framework for
the interconnection of interacting simulations, and is of
particular interest to our understanding JSAF. The
HLA Runtime Infrastructure (RTI) and a set of
services implement this interface. The RTI and these
services allow interacting simulations to efficiently

3.3. Bridges

Some applications communicate with external
information systems. These applications are called
bridges. They join both the BARS distribution system
and an outside system and translate object creation and
change events between BARS and the outside system.
By maintaining associations between BARS objects
and these outside objects, it is possible to represent
those objects in BARS and vice-versa. Figure 3.3
shows how a bridge application fits into a session.

exchange information in a coordinated fashion, when
they participate in a distributed federation.

JSAF primarily uses the HLA as its communication
layer. For any object or interaction, JSAF determines
the locality of related entities for this communication
and sends the necessary information via the RTI if they
are known to be upon a different processor. For
example, if a DI fired upon another DI on the same
JSAF process, the simulation would handle this
interaction internally. But if the second DI was known
to be upon another federate (in our case a BARS
bridge), then the interaction would go out via the RTI.
The only limitation to remember is that JSAF must
publish this interaction (a default setting). To complete
this communication, the federate expecting to receive
this interaction must correspondingly subscribe to this
interaction.

As mentioned above, a federation is a set of associated
applications that use a unifying object model, agreed
upon prior to execution, to achieve a specific objective.
These applications are called federates. JSAF is a
federate, as is the SAF Bridge mentioned in section 3.
A federation is managed by a “FedExec” process that
is instantiated by the first federate that successfully
invokes the service for federation creation.
Conversely, a federation ends when the last federate
registered with the FedExec invokes the service for
federation destruction. It is typical for all federates to
possess the capability to “create” and “destroy” a
federation, thus avoiding an explicit invocation order
for federates in a federation. Federates use the return
values of these RTI services (and many others like
them) to recognize when various calls may be
appropriately ignored. The unifying object model,
called the Federation Object Model (FOM), defines the
attributes of objects and/or interactions that federates
are permitted to communicate to other federates.

We built a SAF Bridge application, as described in
section 3.3, to connect BARS and JSAF. This
application implements the BARS networking
paradigm as well as implementing an RTI interface to
communicate with JSAF. JSAF has a set of libraries
supporting the Agile FOM Interface (AFI). By using
this interface, JSAF creates a mapping of its internal
data representations into an external representation.
This mapping is necessary for JSAF to participate in
different federations without modification. The
mappings are stored in special files, called reader files
that are interpreted at run-time. The unexpected
advantage to this approach is that these libraries can be
used by other applications, such as our SAF Bridge, to
create a pseudo-JSAF federate. By including a subset
of the JSAF support libraries, it is possible to create
SAF representations of BARS objects in the bridge.
This has many advantages:

Within this framework, an object refers to an instance
of a simulation entity whose state changes are shared
with other federates. Similarly, an interaction is
typically used to communicate an event to other
federates. This contrasts somewhat with the BARS
data distribution system’s concept of everything being
an event. The “publication” and “subscription” of the
object updates and interactions are an additional aspect
of the ability of the RTI to communicate the requested
information. Even if the FOM permits the
transmission of data between federates, it is the
responsibility of the individual federates to publish
(announce that they send out data) and subscribe
(announce interest in receiving data) for the objects
and interactions in which they are interested. We leave
further details of the HLA model of distributed
computing to the interested reader.

• The transparent communication between the

bridge and JSAF by RTI object updates and
interactions (i.e., calls and formatting issues
handled by the internal JSAF libraries).

• Using the same terrain databases and JSAF’s
terrain libraries to ease position translations
between BARS and JSAF.

4.2 Description of JSAF • Leverage physical models in JSAF to handle
weapon behavior (ballistics, damage, etc.).

As mentioned earlier, JSAF evolved from the work on
ModSAF for the Defense Advanced Research Program
Agency (DARPA). It is a collection of libraries and
programs that are oriented toward real-time large-scale
distributed simulation. JSAF is actively used as a tool
that validates the applicability of integrating transition
technologies into the modern warfighter’s inventory of
capabilities and tools. Its current development is
sponsored by US Joint Forces Command, Joint
Experimentation Directorate (J9), and has been integral
in the US Navy’s Fleet Battle Experiments.

4.3 Issues

In BARS and JSAF there are corresponding “events”
that relate to the creation, change and destruction of an
entity. In BARS, these specific events trigger the
dissemination of the salient object state changes to
other applications, such as the SAF Bridge. When it
receives this information, it is necessary to translate the
data into the appropriate object updates such that it
may be sent via the RTI to JSAF. BARS typically

updates positions at a much higher rate than a system
such as JSAF desires. So we track the updates for our
BARS user in a lookup table, and use the simulation
time libraries we inherit from the JSAF interface code
to limit the update rate to a more reasonable one (1
Hz). An exception to this rule is when there are
significant orientation and movement changes in the
BARS user (i.e., begin walking, change facing, etc.).

The translation of entity parameters was less
straightforward. BARS uses a simple coordinate
system based in meters in three dimensions from an
arbitrary origin. JSAF uses a tiled, multi-cell terrain
database that depends upon a Geocentric Coordinate
System (GCC) to unify position-related data. These
databases are stored in Compact Terrain Database
(CTDB) format. The position data is easily converted
into the more commonly recognized Global Coordinate
System (GCS) format, which measures position as a
triplet of latitude, longitude, and altitude. We
converted between the two systems using a third-party
library to translate GCS into Universal Transverse
Mercator (UTM), and vice versa. This was useful
since UTM uses meters in three dimensions from a grid
point on the globe. A simple offset correction yields
the BARS coordinate. The reverse of this process
converts BARS coordinates into GCS.

JSAF has a corresponding mechanism for object
updates. The SAF Bridge catches incoming updates at
the rate they arrive and store the information in another
lookup table (STL map). In this case, we also store a
pointer to the JSAF platform object that relates to the
object update. This allows the SAF Bridge application
to use the built-in dead reckoning code from JSAF to
interpolate the current position of a moving entity
without having to receive constant updates. The
designers of ModSAF recognized that if constant
position updates were going out from all entities, then
the network bandwidth would quickly be consumed.
They implemented a dead-reckoning algorithm that cut
down on network traffic. In essence, each entity would
have a set frequency to update its position. Remote
machines would calculate a new position based on
dead reckoning. The originating machine on the other
hand would simultaneously calculate its ground truth
position and its new dead-reckoning position, and if
they differed by some delta, a new update would be
broadcast to the network. This aspect of dead
reckoning has a side effect due to the normal effects of
network latency. For example, the SAF Bridge sends
position updates to BARS at 10 Hz and a new JSAF
update arrives indicating that at some point in the past
the entity being tracked had turned. This leads to a
visual artifact in the BARS environment display when
the SAF entity “jumps” to its new location.

5. Conclusions and Future work

We designed a system that can help trainees in
situations requiring engagement between individual
combatants, such as those in MOUT scenarios. By
using mobile AR, synthetic forces are inserted and
engaged realistically in the real world. A connection to
JSAF allows the synthetic forces to behave
intelligently and gives trainers a familiar interface with
which to control the scenario. This system gives the
trainee the benefits of both live training and of having
synthetic actors for a predictable, repeatable scenario.
We are currently testing this system and comparing its
performance to a previous prototype built at NRL [2].

Although the basic pieces are in place to use mobile
AR for embedded training, there is still much work to
be done. We have in mind several improvements as
future work. These improvements would yield a more
effective system:

In a similar fashion, the interaction between an
“armed” BARS user and JSAF DIs requires additional
management. The SAF system needed to be informed
whenever the BARS user was firing. The tracked
weapon uses a simple momentary contact button that
the user presses to indicate a firing. The tracker data is
used to call the JSAF provided ballistics library and
determine if any of the synthetic forces have been hit.
If the target is hit, a “fire” interaction is sent by the RTI
to JSAF. Once received, JSAF can compute the
damage and if necessary change the status of the SAF
entity (damaged, dead, etc.). By using the
corresponding libraries inherited from JSAF, the
BARS user can also be targeted and damaged by SAF
entities. We have yet to implement a mechanism to
indicate incoming weapon fire and damage to the
BARS user.

• Implement a method to convert BARS terrain

models into the CTDB format used by the SAF
systems, and thereby enabling the BARS occlusion
model to exactly match the model used by the SAF
entities.

• Make the synthetic forces look more realistic in
the AR display. The forces are currently drawn
without respect to environmental conditions,
shadows, or any occluding items that are not
already in the occlusion model.

• Increase the accuracy of the weapon tracking
system. The current tracking methods are accurate
enough for measuring the user’s viewpoint, but

even slight errors in tracking the weapon will
greatly reduce the accuracy of the user’s aim.

6. References

[1] Stytz, M.R.: “Distributed Virtual Environments”

IEEE Computer Graphics And Applications, pp.
19-31, May 1996.

[2] Brown, D., Baillot, Y., Julier, S.J., Armoza, D.,

Eliason, J.J., Livingston, M.A., Rosenblum, L.J.,
& Garrity, P.: “Data Distribution for Mobile
Augmented Reality in Simulation and Training”
Proceedings of the 2003 Interservice/Industry
Training, Simulation, and Education Conference,
Orlando, December 2003.

[3] Space and Naval Warfare Systems Center – San

Diego: “Synthetic Theater of War – Frequently
Asked Questions” Retrieved February 5, 2004
http://www-code44.spawar.navy.mil/STOWFAQ/

[4] Julier, S., Y. Baillot, D. Brown, & L. Rosenblum:

“BARS: Battlefield Augmented Reality System”
NATO Symposium on Information Processing
Techniques for Military Systems, Istanbul,
Turkey, October 2000.

[5] Ceranowicz, A: “Modular Semi-Automated

Forces”, Proceedings of the 1994 Winter
Simulation Conference, pp. 755-761, 1994.

[6] Calder, R.B., Smith, J.E., Courtemanche, A.J.,

Mar, J.M.F., Ceranowicz, A.Z.: “ModSAF
Behavior Simulation and Control” Proceedings of
the Third Conference on Computer Generated
Forces and Behavioral Representation. Orlando,
Florida: Institute for Simulation and Training,
University of Central Florida, March, 1993.

[7] Brown, D.G., Julier, S.J., Baillot, Y., Livingston,

M.A., Rosenblum, L.J.: “Event-Based Data
Distribution for Mobile Augmented Reality and
Virtual Environments” Presence: Teleoperators
and Virtual Environments, Volume 13, Issue 2,
April 2004.

[8] Institute of Electrical and Electronics Engineers,

International Standard, ANSI/IEEE Standard
1561.1-2000, Standard for Modeling and
Simulation High Level Architecture, Federate
Interface Specification, September 2000.

Author Biographies

DAVID ARMOZA is a Computer Scientist at the
Naval Research Laboratory. He received his B.A. in
Computer Science from University of Maryland in
1989 and his M.S. in Computer Science from The
Johns Hopkins University in 1996. He works in the
area of Distributed Simulation. His current research
interests include experimentation with the US Navy’s
Joint Semi-Automated Forces (JSAF) simulation
system, and distributing stand-alone applications with
DMSO’s High Level Architecture (HLA).

DENNIS G. BROWN is a Computer Scientist at the
Naval Research Laboratory. He received his B.A. in
Computer Science from Rice University in 1996 and
his M.S. in Computer Science from the University of
North Carolina at Chapel Hill in 1998. He works on
the Battlefield Augmented Reality System (BARS) and
multi-modal virtual reality projects. His research
interests include ubiquitous computing and data
distribution. He is a member of IEEE.

http://www-code44.spawar.navy.mil/STOWFAQ/

