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ABSTRACT: The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays 
battlefield intelligence information to a dismounted warrior.  The primary BARS components include a wearable 
computer, a wireless network, and a tracked, see-through Head Mounted Display (HMD).  The computer is 
responsible for generating graphics to the HMD that appear, from the user's perspective, to exist in the surrounding 
environment.  Thus, a building could be augmented to show, for example, its name or a plan of its interior. Simulated 
entities with which the BARS user might interact can also be displayed. 
 
Joint Semi-Automated Forces (JSAF) is a software system capable of simulating entity level platforms and behaviors 
in a heterogeneous, distributed computing environment.  This system implements communication between distributed 
components of the battle space with the High Level Architecture (HLA).   A very important aspect of each is that 
interactions spawned by “live,” “virtual,” and “constructive” forces are seamlessly integrated.  
 
In our experiment, we bridge the gap between a user wearing the BARS hardware and constructive entities.  We use 
the Real-Time Infrastructure (RTI) to distribute and translate entity pose and appearance data between the BARS data 
distribution system and JSAF.  This interface allows a BARS user to interact with the SAF entities in real time, 
including armed engagement.  We will discuss the design and implementation of these two interfaces, including 
special considerations unique to each, and their applications with respect to embedded training. 
 
 
1. Introduction 
 
Mobile augmented reality has the potential to 
revolutionize live, embedded training.  While live 
training provides the most realistic experience, it tends 
to expensive by virtue of its non-repeatability and 
consumed resources. Purely virtual training is useful 
but does not yet fully replicate the experience of live 
training [1].  However, with mobile Augmented 
Reality (AR), it is possible to insert synthetic forces 
into live training exercises in a realistic manner.  This 
approach permits trainees to tactically engage synthetic 
forces.  
 
In previous work, we discussed how to insert synthetic 
forces into the real world using AR [2].  Once it is 

possible for the AR user to interact with synthetic 
forces, how are the behaviors of those forces 
controlled?  Existing Semi-Automated Forces (SAF) 
systems are the end result of many man-hours 
designing software algorithms capable of simulating 
the behavior of military and civilian forces.  By 
connecting the Battlefield Augmented Reality System 
(BARS) to these systems, we have leveraged their 
capabilities for use in mobile AR training—the BARS 
user appears to the SAF system as another of its 
distributed entities, and the SAF entities appear in the 
BARS display as synthetic forces.  Thus, it can be used 
as an embedded training system for multiple areas of 
interest. Our preliminary experiments have targeted 
simple military exercises for dismounted infantry, but 
can be transitioned for homeland defense scenarios, 
such as might be needed by first responders. 

 



 

  

 
Figure 2.1  The BARS Wearable System. 

We used the Joint Semi-Automated Forces (JSAF) 
software system [3] to support research for the US 
Navy. The interface with JSAF uses a custom High 
Level Architecture (HLA) federate. This paper will 
explain how the interfaces were built, and what they 
can do. 
 
In section 2, the problem is described in more detail. 
The existing BARS data distribution system is 
described in section 3. Section 4 describes how BARS 
was interfaced to JSAF. Section 5 wraps up with some 
ideas for future work. 
 
2. Problem Statement 
 
2.1 Mobile AR For Embedded Training 
 
AR applies virtual reality techniques to the user’s real 
world experience by generating, from the user’s 
perspective, graphics and sounds that appear to exist in 
the surrounding environment.  For example, it is 
possible to augment the view of a building to show its 
name, a plan of its interior, icons to represent reported 
hazard locations, and the names of adjacent streets.  
Research on BARS [4] has focused on the problem of 
developing information systems able to enhance the 
user’s situation awareness by providing data about the 
environment and its contents.   
 
The centerpiece of BARS is a mobile augmented 
reality system that displays head-up battlefield 
intelligence information to a dismounted warrior, 
similar to the head-up display (HUD) systems designed 
for fighter pilot cockpits.  The system consists of a 
wearable computer, a wireless network, and a tracked 
see-through Head Mounted Display (HMD).  Three-
dimensional (3D) data about the environment is 
collected (through surveying, sensors, or reports by 
other users) and made available to the system.  By 
using a Global Positioning System (GPS) unit and an 
orientation tracker it is possible to know where the user 
is located and the direction in which he is looking.  
Based on this data, the desired 3D data is rendered to 
appear as if it were in the real world. Figure 2.1 shows 
the BARS wearable system. 
 
In addition to providing real-time situation awareness 
data, BARS can render synthetic forces into its real-
world view.  Compared to providing situation 
awareness data, rendering synthetic forces in BARS 
has additional needs because even though the basic AR 
functionality is the same, the paradigms required to 
solve these problems are very different.  In the 
situation awareness mode, BARS adds information to 

the real-world view that the user would not normally 
see.  It is necessary for this information to stand out 
and appear artificial.  In the embedded training mode, 
BARS inserts cues into the real-world view that, 
ideally, the user could not distinguish from reality.  For 
example, a team of trainees in a Military Operations for 
Urban Terrain (MOUT) training facility could work 
together against a simulated enemy force. 
 
Special needs dictated the changes necessary to 
accommodate embedded training scenarios in BARS.  
These changes were described in more detail 
previously [2], but we will summarize them here. First, 
the graphics renderer had to be updated to handle 
realistic entities, helped by the use of a third-party 
human animation system.  Second, occlusion models 
had to be created to represent the locale in which the 
training scenario occurred.  These models are used to 
properly occlude the synthetic forces as they walk 
behind walls, over hills, and so on.  Without these 
models, the synthetic forces would be visible in 
unrealistic ways.  Figure 2.2 shows an example of what 
a user sees when using BARS for embedded training. 
Finally, a tracked weapon surrogate had to be added to 
the system.  This weapon has the same type of tracker 

 

Figure 2.2  Computer-generated soldier drawn in 
the real world. 



 

that tracks the user’s head.  When the user pulls the 
trigger, the system knows where the weapon is aimed 
and can model the effects of firing the weapon 
appropriately. 
 
2.2 The SAF-based entity 
 
In our experiment, we used a real-time, time-stepped 
simulation built upon the design principles of Modular 
Semi-Automated Forces (ModSAF) [5], the 
predecessor of JSAF.  JSAF is designed to seamlessly 
integrate three types of entities.  An entity is intended 
to represent, within the simulation, a specific instance 
of a real-world, physical asset. The entity types that a 
SAF simulation is designed to simultaneously 
coordinate within a single distributed world are 
referred to as “live”, “virtual”, or “constructive”.  A 
“live” asset represents updates from a real-world object 
(e.g., an actual destroyer participating in a naval 
exercise).  A “virtual” entity is an entity that reflects 
the actions of a man-in-the-loop tool.  A “constructive” 
entity is an entity whose behavior and state are 
determined purely from the internal code modules of 
the SAF system.  The simulation system maintains a 
database of SAF-based entities.  The entities are stored 
in the database fall into two basic categories.  The first 
category represents the constructive entities that 
originate on the local SAF processor.  The second 
category tracks the state updates of all the other entities 
in the simulation, whether they are constructive entities 
from other parts of the distributed simulation, man-in-
the-loop simulators, or updates from actual forces.  For 
the purposes of our discussion, the JSAF dismounted 
infantry (DI) entity is an example of a constructive 
entity, while the BARS user is an example of a virtual 
entity.  We shall discuss this database in more depth 
below (see section 2.3). 
 
The SAF-based entity represented in the simulation 
database is derived from an object-based architecture.  
Each entity is a unique instance of a parameterized set 
of object models that are joined to create a descriptive 
model for an entity type, whether it is a human 
infantryman, a tank, or any of the real-world objects 
that a simulation tool might need to represent.  The 
entity is created by joining a set of generic component 
models that may or may not be specified at a higher 
level of detail through object-oriented inheritance.  For 
instance, the SAF DI we utilized is created by using a 
derived instance of the generic Hull model (upon 
which all entities are based).  The Hull model contains 
the functional interface for the movement of an entity 
within the simulation, and provides the frame upon 
which other models hang.  One of the primary models 
that hang upon the Hull is the Turret.  The Turret is 

typically configured with an arbitrary number of 
components (e.g., weapons, sensors, etc.). In the case 
of a SAF DI, there is a derived Turret that models the 
torso and head of a human through the additional 
components “mounted” upon or “carried” by this 
Turret: 
 
 Aural sensor model  Ears 
 Visual sensor model  Eyes 
 Ballistic Gun model  Rifle (M16A) 
 
Furthermore, there are models that represent the 
interaction of the SAF entity with the environment and 
instantaneous effects.  For the SAF DI, this includes 
but is not limited to the following models: 
 
• Line of Sight Models: visual occlusion by 

buildings and terrain, temporary environmental 
effects ranging from time-of-day based light levels 
to obscurement from smoke. 

• Damage Models: damage effects upon entities or 
terrain from indirect and direct fire weapons. 

• Weapon Models: determine the chances for 
indirect and direct weapon fire to hit a particular 
target, whether that be an environmental feature 
such as a road or as in our case an enemy 
combatant (“red” forces). 

• Terrain Models: provide the environment wherein 
a DI moves (includes algorithms to deal with 
obstacle avoidance, navigating multi-elevation 
structures (MES), etc.). 

 
By using these models along with many others, it is 
now possible to track entities and allow them to 
interact.  The interactions can be as simple as those 
found in physics-based models (e.g., ballistic 
trajectories, etc.) to task-based state behaviors (e.g., 
detection and response to enemy units, etc.). 
 
2.3 Distributed Entities 
 
State information for distributed entities is shared 
within the SAF system by using a distributed database, 
called the PO (Persistent Object) database [6].  It is an 
object-oriented database that provides a localized 
interface for the command and behavioral information 
that must be shared between the distributed simulation 
elements.  This database was designed to address 
several issues.  It allows an arbitrary number of 
processing engines to work together in a seamless 
fashion.  It provides a reliable method for the 
thousands of objects that must be tracked in a 
simulation to communicate both the “ground truth” of 
a simulation along with the command and control (C2) 

 



 

behavior necessary to organize complex multi-entity 
tasks (e.g., unit organization, missions, etc.).  
 
By leveraging the capabilities of the SAF system to 
distribute entity information and behavior it is possible 
to design scenarios for the constructive entities that can 
execute arbitrarily complex behaviors.  The complexity 
of the tasks supported by the SAF systems at the time 
of our prototype development was fairly basic for a DI.  
Ongoing efforts in the area of Joint Urban Operations 
(JUO) are expected to enhance the capabilities of the 
SAF systems to provide better options for embedded 
training. 
 
In our case, we were primarily interested in 
communicating the existence of a BARS user to the 
SAF, thereby permitting SAF entities to properly 
interact with the BARS “entity.”  To this end, we used 
the existing communication protocols that signal the 
creation, update and destruction of a remote entity to 
the PO database.  Thus, the SAF system in question 
would have sufficient information to be aware of this 
new entity.  Conversely, the SAF systems would 
transmit entity creation, update and destruction data to 
external applications as dictated by their data 
distribution models. 
 
Now that we have described the two major pieces (the 
mobile AR system and the SAF entities), we will 
describe how they were connected, beginning with a 
description of the BARS data distribution system. 
 
3. BARS Event Distribution System 
 
The BARS distribution system is based entirely on the 
concept of events, which are discrete packets of 
information sent between program modules within a 
BARS application and across applications.  Events are 
used to instantiate objects (in effect, to transmit a view 
of a database between systems), update existing 
objects, and to provide other non-database status 
information such as protocol management data.  The 
BARS event distribution system is described in detail 
in [7], so only the relevant features will be described in 
this section. 
 
3.1. Replicated Object Repositories 
 
All of the data for a scenario is stored in a distributed 
database called the object repository.  The data consists 
of the mostly static models of the physical 
surroundings (buildings, streets, points of interest, etc), 
dynamic avatars that represent users and other entities, 
and objects created to communicate ideas, such as 
reports of enemy locations, routes for users to follow, 

and digital ink.  This repository is replicated in whole 
or in part for each application by sending and receiving 
events.  When an object changes, only the changed 
information is distributed, rather than the entire object 
state.  A database object is assumed to be “live” until 
an explicit “destroy” event is distributed. 
 
When a BARS application starts, it loads an initial set 
of objects from a number of sources, including saved 
databases, other applications already running on the 
network, and files specified on the command line.  The 
initial set of objects typically consists of street labels, 
landmarks, building information, and other terrain-like 
information, as well as an initial set of objectives, 
routes, and phase markers for the current task.  Since 
the user is initially given a database to start, and 
everything else in the wearable system is self-
contained, the user will have a working AR system 
even if all network connectivity is lost during an 
operation.   
 
3.2. Event Transportation 
 
The heart of the event transportation system is the 
Object and Event Manager.  The Object and Event 
Manager is responsible for dispatching events within 
an application and distributing those events to remote 
applications.  When the Object and Event Manager 
receives an event, it places that event on an 
asynchronous event queue.  An event dispatching 
thread delivers the event to all the listeners that are 
subscribed to receive the specified event type.  It is 
possible to dynamically extend the set of events and 
listeners handled by the dispatcher at runtime.  Figure 
3.1 shows the flow of events within an application. 
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Figure 3.1  The flow of events within an application.

This event mechanism was extended to allow many 
separate applications to trade events by creating Event 
Transporters.  Event Transporters allow Object and 
Event Managers in different application instances to 
send and receive events over Internet Protocol (IP).  
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Figure 3.2  The flow of events between applications. 
Figure 3.2 shows the flow of events between 
applications.  If an event is tagged as distributed, an 
Event Transporter serializes the event and broadcasts it 
to other applications.  The Event Transporters in 
remote applications synthesize the event object and 
dispatch it on those applications' event queues.  The 
system uses transporters based on IP multicast and 
TCP/IP.  

It is through bridge applications that we connect BARS 
to JSAF.  We will describe this application next.  
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Figure 3.3 A bridge application and other 

applications. 

 
As events are created, they are tagged “reliable” or 
“unreliable” designating how they should be 
transported.  Object creation and deletion events are 
always sent reliably.  Object changes are sent reliably 
or unreliably based first on whether or not the 
modification is relative to other changes.  Relative 
changes have an ordering and each one is important, so 
those are sent reliably.  Non-relative changes, such as 
the constant updates of a user’s position, are mostly 
sent unreliably since if one were missed, the next 
would overwrite it anyway.  Periodically, these non-
relative changes are sent reliably.  This policy makes 
the assumption that the implementation of IP 
networking in a real operation may drop IP packets 
often, making reliable multicast expensive, and so 
events are not sent reliably unless they are thought to 
be truly necessary.   

 
4. Connecting JSAF and BARS 
 
4.1 Overview of HLA 
 
The High Level Architecture (HLA) is an IEEE 
standard [8] that was developed as a means by which 
the Modeling and Simulation (M&S) community could 
share a common architecture for distributed modeling 
and simulation. There are three underlying portions of 
this framework; the rules, the federation interface 
specification, and the object model template.  The HLA 
federation interface defines the common framework for 
the interconnection of interacting simulations, and is of 
particular interest to our understanding JSAF.  The 
HLA Runtime Infrastructure (RTI) and a set of 
services implement this interface.  The RTI and these 
services allow interacting simulations to efficiently 

 
3.3. Bridges 
 
Some applications communicate with external 
information systems.  These applications are called 
bridges.  They join both the BARS distribution system 
and an outside system and translate object creation and 
change events between BARS and the outside system.  
By maintaining associations between BARS objects 
and these outside objects, it is possible to represent 
those objects in BARS and vice-versa.  Figure 3.3 
shows how a bridge application fits into a session.  
 

 



 

exchange information in a coordinated fashion, when 
they participate in a distributed federation. 

JSAF primarily uses the HLA as its communication 
layer.  For any object or interaction, JSAF determines 
the locality of related entities for this communication 
and sends the necessary information via the RTI if they 
are known to be upon a different processor.  For 
example, if a DI fired upon another DI on the same 
JSAF process, the simulation would handle this 
interaction internally.  But if the second DI was known 
to be upon another federate (in our case a BARS 
bridge), then the interaction would go out via the RTI.  
The only limitation to remember is that JSAF must 
publish this interaction (a default setting).  To complete 
this communication, the federate expecting to receive 
this interaction must correspondingly subscribe to this 
interaction. 

 
As mentioned above, a federation is a set of associated 
applications that use a unifying object model, agreed 
upon prior to execution, to achieve a specific objective.  
These applications are called federates. JSAF is a 
federate, as is the SAF Bridge mentioned in section 3.  
A federation is managed by a “FedExec” process that 
is instantiated by the first federate that successfully 
invokes the service for federation creation.  
Conversely, a federation ends when the last federate 
registered with the FedExec invokes the service for 
federation destruction.  It is typical for all federates to 
possess the capability to “create” and “destroy” a 
federation, thus avoiding an explicit invocation order 
for federates in a federation.  Federates use the return 
values of these RTI services (and many others like 
them) to recognize when various calls may be 
appropriately ignored.  The unifying object model, 
called the Federation Object Model (FOM), defines the 
attributes of objects and/or interactions that federates 
are permitted to communicate to other federates. 

 
We built a SAF Bridge application, as described in 
section 3.3, to connect BARS and JSAF.  This 
application implements the BARS networking 
paradigm as well as implementing an RTI interface to 
communicate with JSAF.  JSAF has a set of libraries 
supporting the Agile FOM Interface (AFI).  By using 
this interface, JSAF creates a mapping of its internal 
data representations into an external representation.  
This mapping is necessary for JSAF to participate in 
different federations without modification.  The 
mappings are stored in special files, called reader files 
that are interpreted at run-time.  The unexpected 
advantage to this approach is that these libraries can be 
used by other applications, such as our SAF Bridge, to 
create a pseudo-JSAF federate.  By including a subset 
of the JSAF support libraries, it is possible to create 
SAF representations of BARS objects in the bridge.  
This has many advantages: 

 
Within this framework, an object refers to an instance 
of a simulation entity whose state changes are shared 
with other federates.  Similarly, an interaction is 
typically used to communicate an event to other 
federates.  This contrasts somewhat with the BARS 
data distribution system’s concept of everything being 
an event.  The  “publication” and “subscription” of the 
object updates and interactions are an additional aspect 
of the ability of the RTI to communicate the requested 
information.  Even if the FOM permits the 
transmission of data between federates, it is the 
responsibility of the individual federates to publish 
(announce that they send out data) and subscribe 
(announce interest in receiving data) for the objects 
and interactions in which they are interested.  We leave 
further details of the HLA model of distributed 
computing to the interested reader.  

 
• The transparent communication between the 

bridge and JSAF by RTI object updates and 
interactions (i.e., calls and formatting issues 
handled by the internal JSAF libraries).  

• Using the same terrain databases and JSAF’s 
terrain libraries to ease position translations 
between BARS and JSAF.  

4.2 Description of JSAF • Leverage physical models in JSAF to handle 
weapon behavior (ballistics, damage, etc.).  

As mentioned earlier, JSAF evolved from the work on 
ModSAF for the Defense Advanced Research Program 
Agency (DARPA).  It is a collection of libraries and 
programs that are oriented toward real-time large-scale 
distributed simulation.  JSAF is actively used as a tool 
that validates the applicability of integrating transition 
technologies into the modern warfighter’s inventory of 
capabilities and tools.  Its current development is 
sponsored by US Joint Forces Command, Joint 
Experimentation Directorate (J9), and has been integral 
in the US Navy’s Fleet Battle Experiments. 

 
4.3 Issues 
 
In BARS and JSAF there are corresponding “events” 
that relate to the creation, change and destruction of an 
entity.  In BARS, these specific events trigger the 
dissemination of the salient object state changes to 
other applications, such as the SAF Bridge.  When it 
receives this information, it is necessary to translate the 
data into the appropriate object updates such that it 
may be sent via the RTI to JSAF.  BARS typically 

 



 

updates positions at a much higher rate than a system 
such as JSAF desires.  So we track the updates for our 
BARS user in a lookup table, and use the simulation 
time libraries we inherit from the JSAF interface code 
to limit the update rate to a more reasonable one (1 
Hz).  An exception to this rule is when there are 
significant orientation and movement changes in the 
BARS user (i.e., begin walking, change facing, etc.). 

The translation of entity parameters was less 
straightforward.  BARS uses a simple coordinate 
system based in meters in three dimensions from an 
arbitrary origin.  JSAF uses a tiled, multi-cell terrain 
database that depends upon a Geocentric Coordinate 
System (GCC) to unify position-related data.  These 
databases are stored in Compact Terrain Database 
(CTDB) format.  The position data is easily converted 
into the more commonly recognized Global Coordinate 
System (GCS) format, which measures position as a 
triplet of latitude, longitude, and altitude.  We 
converted between the two systems using a third-party 
library to translate GCS into Universal Transverse 
Mercator (UTM), and vice versa.  This was useful 
since UTM uses meters in three dimensions from a grid 
point on the globe.  A simple offset correction yields 
the BARS coordinate.  The reverse of this process 
converts BARS coordinates into GCS. 

 
JSAF has a corresponding mechanism for object 
updates.  The SAF Bridge catches incoming updates at 
the rate they arrive and store the information in another 
lookup table (STL map).  In this case, we also store a 
pointer to the JSAF platform object that relates to the 
object update.  This allows the SAF Bridge application 
to use the built-in dead reckoning code from JSAF to 
interpolate the current position of a moving entity 
without having to receive constant updates.  The 
designers of ModSAF recognized that if constant 
position updates were going out from all entities, then 
the network bandwidth would quickly be consumed.  
They implemented a dead-reckoning algorithm that cut 
down on network traffic.  In essence, each entity would 
have a set frequency to update its position.  Remote 
machines would calculate a new position based on 
dead reckoning.  The originating machine on the other 
hand would simultaneously calculate its ground truth 
position and its new dead-reckoning position, and if 
they differed by some delta, a new update would be 
broadcast to the network.  This aspect of dead 
reckoning has a side effect due to the normal effects of 
network latency.  For example, the SAF Bridge sends 
position updates to BARS at 10 Hz and a new JSAF 
update arrives indicating that at some point in the past 
the entity being tracked had turned.  This leads to a 
visual artifact in the BARS environment display when 
the SAF entity “jumps” to its new location. 

 
5. Conclusions and Future work 
 
We designed a system that can help trainees in 
situations requiring engagement between individual 
combatants, such as those in MOUT scenarios.  By 
using mobile AR, synthetic forces are inserted and 
engaged realistically in the real world.  A connection to 
JSAF allows the synthetic forces to behave 
intelligently and gives trainers a familiar interface with 
which to control the scenario.  This system gives the 
trainee the benefits of both live training and of having 
synthetic actors for a predictable, repeatable scenario.  
We are currently testing this system and comparing its 
performance to a previous prototype built at NRL [2]. 
 
Although the basic pieces are in place to use mobile 
AR for embedded training, there is still much work to 
be done.   We have in mind several improvements as 
future work.  These improvements would yield a more 
effective system: 

 
In a similar fashion, the interaction between an 
“armed” BARS user and JSAF DIs requires additional 
management.  The SAF system needed to be informed 
whenever the BARS user was firing.  The tracked 
weapon uses a simple momentary contact button that 
the user presses to indicate a firing.  The tracker data is 
used to call the JSAF provided ballistics library and 
determine if any of the synthetic forces have been hit.  
If the target is hit, a “fire” interaction is sent by the RTI 
to JSAF.  Once received, JSAF can compute the 
damage and if necessary change the status of the SAF 
entity (damaged, dead, etc.).  By using the 
corresponding libraries inherited from JSAF, the 
BARS user can also be targeted and damaged by SAF 
entities.  We have yet to implement a mechanism to 
indicate incoming weapon fire and damage to the 
BARS user. 

 
• Implement a method to convert BARS terrain 

models into the CTDB format used by the SAF 
systems, and thereby enabling the BARS occlusion 
model to exactly match the model used by the SAF 
entities. 

• Make the synthetic forces look more realistic in 
the AR display.  The forces are currently drawn 
without respect to environmental conditions, 
shadows, or any occluding items that are not 
already in the occlusion model. 

• Increase the accuracy of the weapon tracking 
system.  The current tracking methods are accurate 
enough for measuring the user’s viewpoint, but 

 



 

 

even slight errors in tracking the weapon will 
greatly reduce the accuracy of the user’s aim. 
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